[1]李修全.当前人工智能技术创新特征和演进趋势[J].智能系统学报,2020,15(2):409-412.[doi:10.11992/tis.202001030]
 LI Xiuquan.Main features and development trend in current artificial intelligence technology innovation[J].CAAI Transactions on Intelligent Systems,2020,15(2):409-412.[doi:10.11992/tis.202001030]
点击复制

当前人工智能技术创新特征和演进趋势

参考文献/References:
[1] KIM B, WATTENBERG M, GILMER J, et al. Interpretability beyond feature attribution: quantitative Testing with Concept Activation Vectors (TCAV)[C]//Proceedings of the 35th International Conference on Machine Learning 2018. Stockholm, Sweden, 2018: 2673-2682.
[2] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[EB/OL]. https://arxiv.org/abs/1806.0126.
[3] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar, 2014: 1746-1751.
[4] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL). Louisiana, USA, 2018.
[5] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (NAACL). Minneapolis, MN, USA, 2019.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS). Lake Tahoe, USA, 2012: 1097-1105.
[7] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[EB/OL]. https://arxiv.org/abs/1512.03385.
[8] STRUBELL E, GANESH A, MCCALLUM A. Energy and policy considerations for deep learning in NLP[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics. Florence, Italy, 2019.
[9] ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems[EB/OL]. https://arxiv.org/abs/1603.04467v1.
[10] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library[EB/OL]. https://arxiv.org/abs/1912.01703?context=cs.LG.
[11] JOUPPI N P, YOUNG C, PATIL N, et al. In-datacenter performance analysis of a tensor processing unit[C]//Proceedings of the 44th Annual International Symposium on Computer Architecture (ISCA). Toronto, Canada, 2017: 1-12.
[12] NVIDIA. GPU-based deep learning inference: a performance and power analysis[EB/OL]. California: NVIDIA, 2015. (2015-11)[2020-03-25]. https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf.
[13] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[14] ULLMAN S. Using neuroscience to develop artificial intelligence[J]. Science, 2019, 363(6428): 692-693.
[15] ROY K, JAISWAL A, PANDA P. Towards spike-based machine intelligence with neuromorphic computing[J]. Nature, 2019, 575(7784): 607-617.
[16] PEI Jing, DENG Lei, SONG Sen, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 2019, 572(7767): 106-111.
[17] YING Mingsheng. Quantum computation, quantum theory and AI[J]. Artificial intelligence, 2010, 174(2): 162-176.
相似文献/References:
[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(1):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4():1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(6):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3():476.
[3]徐玉如,庞永杰,甘 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1():9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(1):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1():38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(2):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1():16.
[6]秦裕林,朱新民,朱 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(2):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1():11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(1):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2():1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(3):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(5):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2():20.
[10]王志良,杨 溢,杨 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(6):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4():521.[doi:10.3969/j.issn.1673-4785.2009.06.009]

备注/Memo

收稿日期:2020-01-21。
作者简介:李修全,研究员,工学博士,硕士生导师,兼任科技部新一代人工智能发展研究中心副主任,主要研究方向为大数据与人工智能技术预测、产业技术路线图、人工智能创新政策研究。主持课题10余项,发表学术论文40余篇。
通讯作者:李修全.E-mail:lixq@casted.org.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134