[1]齐小刚,张海洋,魏倩.一种非视距环境下的目标定位算法[J].智能系统学报,2021,16(1):75-80.[doi:10.11992/tis.201912012]
 QI Xiaogang,ZHANG Haiyang,WEI Qian.A target localization algorithm in NLOS environments[J].CAAI Transactions on Intelligent Systems,2021,16(1):75-80.[doi:10.11992/tis.201912012]
点击复制

一种非视距环境下的目标定位算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年1期
页码:
75-80
栏目:
学术论文—智能系统
出版日期:
2021-01-05

文章信息/Info

Title:
A target localization algorithm in NLOS environments
作者:
齐小刚12 张海洋1 魏倩1
1. 西安电子科技大学 数学与统计学院,陕西 西安 710071;
2. 西安电子科技大学 宁波信息技术研究院,浙江 宁波 315200
Author(s):
QI Xiaogang12 ZHANG Haiyang1 WEI Qian1
1. School of Mathematics and Statistics, Xi’dian University, Xi’an 710071, China;
2. Ningbo Information Technology Institute, Xi’dian University, Ningbo 315200, China
关键词:
目标定位非视距到达时间平衡参数二分法广义信赖域子问题凸优化误差抑制
Keywords:
target localizationnon-line-of-sight (NLOS)time-of-arrival (TOA)balance parametersbisectiongeneralized trust region sub-problem (GTRS)convex optimizationerror mitigate capability
分类号:
TP393
DOI:
10.11992/tis.201912012
摘要:
针对机器人、无人机和其他智能系统的位置信息,研究了非视距(non line of sight, NLOS)环境中基于到达时间(time of arrival,TOA)测距的目标定位问题。在建模过程中,通过引入平衡参数来抑制NLOS误差对定位精度的影响,并成功将定位问题的形式与一个广义信赖域子问题(generalized trust region subproblem,GTRS)框架进行耦合。与其他凸优化算法不同的是,本文没有联合估计目标节点的位置和平衡参数,而是采用了一种迭代求精的思想,算法可以用二分法高速有效地进行求解。 所提算法与已有的算法相比,不需要任何关于NLOS路径的信息。此外,与大多数现有算法不同,所提算法的计算复杂度低,能够满足实时定位的需求。仿真结果表明:该算法具有稳定的NLOS误差抑制能力,在定位性能和算法复杂度之间有着很好的权衡。
Abstract:
The location information of robots, UAVs, and other intelligent systems is crucial. This paper mainly studies the target location problem based on TOA ranging in the non-line-of-sight (NLOS) environment. In the process of modeling, the influence of NLOS error on positioning precision is restrained, and the form of the localization problem is coupled with a generalized trust-region subproblem (GTRS) framework. Instead of joint estimation of the location and balance parameter of the object nodes, an iterative refinement idea is adopted, and the algorithm can be solved quickly and effectively by dichotomy. In contrast to existing algorithms, the proposed algorithm does not need information about the NLOS path. In addition, unlike most existing algorithms, the proposed algorithm has a low computational complexity and can meet the need of real-time localization. The simulation results show that the proposed algorithm has stable NLOS error mitigation capability and a good balance between localization performance and algorithm complexity.

参考文献/References:

[1] KOLEDOYE M A, FACCHINETTI T, ALMEIDA L. Improved MDS-based localization with non-line-of-sight RF links[J]. Journal of intelligent and robotic systems, 2020, 98(1):227-237.
[2] WANG Gang, CHEN H, LI Youmign, et al. NLOS error mitigation for TOA-based localization via convex relaxation[J]. IEEE transactions on wireless communications, 2014, 13(8):4119-4131.
[3] 胡楠, 吴成东, 刘鹏达, 等. 基于严格残差选择的非视距定位算法[J]. 东北大学学报(自然科学版), 2016, 37(9):1221-1224
HU Nan, WU Chengdong, LIU Pengda, et al. NLOS localization algorithm based on the strict residual[J]. Journal of Northeastern University (natural science), 2016, 37(9):1221-1224
[4] WYMEERSCH H, MARANO S, GIFFORD W M, et al. A machine learning approach to ranging error mitigation for UWB localization[J]. IEEE transactions on communications, 2012, 60(6):1719-1728.
[5] CHAN Y T, TSUI W Y, SO H C, et al. Time-of-arrival based localization under NLOS conditions[J]. IEEE transactions on vehicular technology, 2006, 55(1):17-24.
[6] YANG Kai, AN Jianping, BU Xiangyuan, et al. A TOA-based location algorithm for NLOS environments using quadratic programming[C]//Proceedings of 2010 IEEE Wireless Communication and Networking Conference. Sydney, Australia, 2010:1-5.
[7] 闫千里, 万鹏武, 卢光跃, 等. 非视距环境下RSS和TDOA联合的信源被动定位[J]. 西安电子科技大学学报, 2019, 46(3):180-188
YAN Qianli, WAN Pengwu, LU Guangyue, et al. Passive localization of the signal source based on RSS and TDOA combination in the non-line-of-sight environment[J]. Journal of Xidian University, 2019, 46(3):180-188
[8] YU Kegen, GUO Y G. Improved positioning algorithms for non line-of sight environments[J]. IEEE transactions on vehicular technology, 2008, 57(4):2342-2353.
[9] LUI K W K, SO H C, MA W K. Maximum a posteriori approach to time-of-arrival-based localization in non-line-of sight environment[J]. IEEE transactions on vehicular technology, 2010, 59(3):1517-1523.
[10] TOMIC S, BEKO M. A bisection-based approach for exact target localization in NLOS environme -nts[J]. Signal processing, 2018, 143:328-335.
[11] CHEN Haotian, WANG Gang. ANSARI N. Improved robust TOA-based localization via NLOS balancing parameter estimation[J]. IEEE transactions on vehicular technology, 2019, 68(6):6177-6181.
[12] BECK A, STOICA P, LI Jian. Exact and approximate solutions of source localization problems[J]. IEEE transactions on signal processing, 2008, 56 (5):1770-1778.
[13] VAGHEFI R M, BUEHRER R M. Cooperative localization in NLOS environments using semide -finite programming[J]. IEEE communications letters, 2015, 19(8):1382-1385.

相似文献/References:

[1]修春波,李欣,巴富珊.模糊直方图模型的运动目标跟踪[J].智能系统学报,2019,14(5):939.[doi:10.11992/tis.201807033]
 XIU Chunbo,LI Xin,BA Fushan.Target tracking based on the fuzzy histogram model[J].CAAI Transactions on Intelligent Systems,2019,14(1):939.[doi:10.11992/tis.201807033]

备注/Memo

备注/Memo:
收稿日期:2019-12-10。
基金项目:国家自然科学基金项目(61877067,61572435);教育部—中国移动联合基金项目(MCM20170103);西安市科技创新项目(201805029YD7CG13-6);宁波市自然科学基金项目(2016A610035,2017A610119)
作者简介:齐小刚,教授,博士生导师,主要研究方向为复杂系统建模与仿真、网络算法设计与应用。申请专利47项(授权19项),登记软件著作权4项。发表学术论文100余篇;张海洋,硕士研究生,主要研究方向为无人机定位与导航;魏倩,硕士研究生,主要研究方向为无人机定位与导航
通讯作者:张海洋. E-mail:1617978744@qq.com
更新日期/Last Update: 2021-02-25