[1]任佳,陈增强,孙明玮,等.PI型自抗扰广义预测控制的性能分析[J].智能系统学报,2021,16(1):66-74.[doi:10.11992/tis.202006041]
 REN Jia,CHEN Zengqiang,SUN Mingwei,et al.Performance analysis of PI-type active disturbance rejection generalized predictive control[J].CAAI Transactions on Intelligent Systems,2021,16(1):66-74.[doi:10.11992/tis.202006041]
点击复制

PI型自抗扰广义预测控制的性能分析(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年1期
页码:
66-74
栏目:
学术论文—智能系统
出版日期:
2021-01-05

文章信息/Info

Title:
Performance analysis of PI-type active disturbance rejection generalized predictive control
作者:
任佳1 陈增强12 孙明玮1 孙青林1
1. 南开大学 人工智能学院,天津 300350;
2. 天津市智能机器人重点实验室,天津 300350
Author(s):
REN Jia1 CHEN Zengqiang12 SUN Mingwei1 SUN Qinglin1
1. College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
2. Key Lab of Intelligent Robotics of Tianjin, Tianjin 300350, China
关键词:
PI型自抗扰广义预测控制频域特性自抗扰控制PI型广义预测控制伯德图奈奎斯特曲线稳定性参数调节
Keywords:
PI-type active disturbance rejection generalized predictive controlfrequency domain characteristicsactive disturbance rejection controlPI-type generalized predictive controlBode diagramNyquist curvestabilityparameter adjustment
分类号:
TP273
DOI:
10.11992/tis.202006041
摘要:
为克服自抗扰控制(active disturbance rejection control, ADRC)算法在大时滞系统中的局限性,减小PI型广义预测控制(PI-type generalized predictive control, PI-GPC)算法的在线计算量,我们在先前的研究中提出了PI型自抗扰广义预测控制(PI-type active disturbance rejection generalized predictive control, PI-ADRGPC)算法。本文通过频域分析方法,对PI-ADRGPC算法进行了稳定性分析,利用PI-ADRGPC算法离散形式的开环传递函数绘制其伯德图,分析了参数变化对PI-ADRGPC性能的影响。通过绘制奈奎斯特曲线,分析了PI-ADRGPC算法的稳定性。通过控制一阶惯性环节以及船舶航向控制系统验证了所提出算法的性能。研究结果表明:与ADRC-GPC算法相比,PI-ADRGPC算法的响应速度更快、控制效果更好。
Abstract:
To overcome the limitations of the active disturbance rejection control (ADRC) algorithm in large time-delay systems and reduce the amount of online calculation of the PI-type generalized predictive control (PI-GPC) algorithm, we proposed the PI-type active disturbance rejection generalized predictive control (PI-ADRGPC) algorithm in our previous research. In this paper, the frequency domain analysis method is used to analyze the stability of the PI-ADRGPC control algorithm. By using the open-loop transfer function of the discrete form of the PI-GPC algorithm to draw the Bode diagram, the influence of parameter changes on the performance of PI-ADRGPC is analyzed. By drawing the Nyquist curve, the stability of the PI-ADRGPC algorithm is analyzed. The performance of the proposed algorithm is verified by controlling the first-order inertial system and the ship heading control system. The research results show that compared with the ADRC-GPC algorithm, the PI-ADRGPC algorithm has a faster response speed and better control effect.

参考文献/References:

[1] 韩京清. 自抗扰控制技术:估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008.
[2] 韩京清. 反馈系统中的线性与非线性[J]. 控制与决策, 1988(2):27-32, 65
HAN Jingqing. Linearity and nonlinearity in feedback systems[J]. Control and decision, 1988(2):27-32, 65
[3] 钟斌, 马莉丽. 交流感应电动机精确解耦模型的自抗扰控制[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(2):217-222
ZHONG Bin, MA Lili. Active disturbance rejection control of AC asynchronous motor’s precise decoupling model[J]. Journal of Liaoning Technical University (natural science), 2015, 34(2):217-222
[4] 王东阳, 王奔, 吴桂良. 基于非线性自抗扰方法的电压型整流器直接功率控制策略[J]. 电测与仪表, 2015, 52(6):77-81
WANG Dongyang, WANG Ben, WU Guiliang. Voltage rectifier direct power control strategy based on nonlinear ADRC method[J]. Electrical measurement & instrumentation, 2015, 52(6):77-81
[5] RONG Zhilin, HUANG Qing. A new PMSM speed modulation system with sliding mode based on active-disturbance- rejection control[J]. Journal of Central South University, 2016, 23(6):1406-1415.
[6] CAO Yongfeng, ZHAO Qiangsong, YE Yongqiang, et al. ADRC-based current control for grid-tied inverters:design, analysis, and verification[J]. IEEE transactions on industrial electronics, 2020, 67(10):8428-8437.
[7] RAMIREZ-NERIA M, MADONSKI R, SHAO S, et al. Robust tracking in underactuated systems using flatness-based ADRC with cascade observers[J]. Journal of dynamic systems, measurement, and control, 2020, 142(9):091002.
[8] DAS S, SUBUDHI B. A two-degree-of-freedom internal model-based active disturbance rejection controller for a wind energy conversion system[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(3):2664-2671.
[9] WANG Zhen, ZHAO Jiwen, WANG Lijun, et al. Combined vector resonant and active disturbance rejection control for PMSLM current harmonic suppression[J]. IEEE transactions on industrial informatics, 2020, 16(9):5691-5702.
[10] ZHOU Xuesong, WANG Jiayao, MA Youjie. Linear active disturbance rejection control of grid-connected photovoltaic inverter based on deviation control principle[J]. Energies, 2020, 13(5):3790.
[11] 陈增强, 车海平, 袁著祉. 具有比例积分结构的广义预测自校正控制器[J]. 控制与决策, 1994, 9(2):105-110
CHEN Zengqiang, CHE Haiping, YUAN Zhuzhi. A generalized predictive self-tuning controller with proportion and integration structure[J]. Control and decision, 1994, 9(2):105-110
[12] 仉宝玉, 肖军. 基于GA参数优化整定的PI型广义预测控制[J]. 科学技术与工程, 2011, 11(2):367-370
ZHANG Baoyu, XIAO Jun. PI-type generalized predictive control based on GA parameter optimization and tuning[J]. Science technology and engineering, 2011, 11(2):367-370
[13] 朱峰, 于佐军, 胡云朕. 基于U模型的非线性系统的比例积分型广义预测控制[C]//第25届中国过程控制会议论文集. 大连, 中国, 2014:958-965.
ZHU Feng, YU Zuojun, HU Yunlian. U-model based PI-GPC controller for a class of non-linear dynamic plant[C]//Proceedings of the 25th Chinese Process Control Conference. Dalian, China, 2014:958-965.
[14] REN J, CHEN Z, SUN M, et al. Design and implementation of the PI-type active disturbance rejection generalized predictive control[C]//Proceedings of the 9th Data Driven Control and Learning Systems Conference. Liuzhou, China, 2020:12?17.
[15] 徐琦, 孙明玮, 陈增强, 等. 内模控制框架下时延系统扩张状态观测器参数整定[J]. 控制理论与应用, 2013, 30(12):1641-1645
XU Qi, SUN Mingwei, CHEN Zengqiang, et al. Extended state observer tuning for time-delay systems in the framework of internal model control[J]. Control theory & applications, 2013, 30(12):1641-1645
[16] 陈增强, 吴瑕, 孙明玮, 等. 基于频域的自抗扰广义预测控制的稳定性分析[J]. 哈尔滨工程大学学报, 2018, 39(6):1046-1051
CHEN Zengqiang, WU Xia, SUN Mingwei, et al. Stability of active disturbance rejection generalized predictive control based on frequency domain[J]. Journal of Harbin Engineering University, 2018, 39(6):1046-1051
[17] 秦贝贝, 陈增强, 孙明玮, 等. 基于自适应神经模糊推理系统的船舶航向自抗扰控制[J]. 智能系统学报, 2020, 15(2):255-263
QIN Beibei, CHEN Zengqiang, SUN Mingwei, et al. Active disturbance rejection control of ship course based on adaptive- network-based fuzzy inference system[J]. CAAI transactions on intelligent systems, 2020, 15(2):255-263
[18] 李荣辉. 欠驱动水面船舶航迹自抗扰控制研究[D]. 大连:大连海事大学, 2013.
LI Ronghui. Active disturbance rejection based tracking control of underactuated surface ships[D]. Dalian:Dalian Maritime University, 2013.

备注/Memo

备注/Memo:
收稿日期:2020-06-24。
基金项目:国家自然科学基金项目(61973175,61973172)
作者简介:任佳,硕士研究生,主要研究方向为智能预测控制、自抗扰控制;陈增强,教授,博士生导师,主要研究方向为智能控制、预测控制、自抗扰控制。中国系统仿真学会理事,中国人工智能学会智能空天专业委员会副主任,天津市自动化学会理事。主持完成国家863项目和国家自然科学基金项目6项,获省部级科技进步奖 4次。发表学术论文300余篇;孙明玮,教授,博士生导师,主要研究方向为飞行器制导与控制、自抗扰控制。中国自动化学会数据驱动控制、学习与优化专业委员会委员。主持国防科技攻关基金项目和国家自然科学基金项目4项,获国防科技进步奖3次。发表学术论文50余篇
通讯作者:陈增强. E-mail:chenzq@nankai.edu.cn
更新日期/Last Update: 2021-02-25