[1]张小川,王宛宛,彭丽蓉.一种军棋机器博弈的多棋子协同博弈方法[J].智能系统学报,2020,15(2):399-404.[doi:10.11992/tis.201812012]
 ZHANG Xiaochuan,WANG Wanwan,PENG Lirong.A multi-chess collaborative game method for military chess game machine[J].CAAI Transactions on Intelligent Systems,2020,15(2):399-404.[doi:10.11992/tis.201812012]
点击复制

一种军棋机器博弈的多棋子协同博弈方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年2期
页码:
399-404
栏目:
人工智能院长论坛
出版日期:
2020-07-09

文章信息/Info

Title:
A multi-chess collaborative game method for military chess game machine
作者:
张小川1 王宛宛2 彭丽蓉3
1. 重庆理工大学 两江人工智能学院, 重庆 400054;
2. 重庆理工大学 计算机科学与工程学院, 重庆 400054;
3. 重庆工业职业技术学院 信息工程学院, 重庆 401120
Author(s):
ZHANG Xiaochuan1 WANG Wanwan2 PENG Lirong3
1. Liangjiang Institute of Artificial Intelligence, Chongqing University of Technology, Chongqing 400054, China;
2. School of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China;
3. Faculty Information Engin
关键词:
机器博弈军棋协同博弈Q学习算法攻守平衡维度灾难UCT高价值棋子
Keywords:
computer gamemilitarycollaborative gameQ learning algorithmbalance of attack and defend UCTdimension disasterhigh value chess piece
分类号:
TP311.5
DOI:
10.11992/tis.201812012
摘要:
针对在军棋博弈不完全信息对弈中,面对棋子不同价值、不同位置、不同搭配所产生的不同棋力,传统的单子意图搜索算法,不能满足棋子之间的协同性与沟通性,同时也缺乏对敌方的引诱与欺骗等高级对抗能力。本文提出一种结合UCT搜索策略的高价值棋子博弈方法,实现高价值棋子协同博弈的策略。实战经验表明:高价值多棋子军棋协同博弈策略优于单棋子军棋博弈策略。
Abstract:
Owing to incomplete information on the military chess and the different strengths of chess pieces with different values, positions, and combinations, the traditional single-intention search algorithm cannot satisfy the coordination and communication requirements of chess pieces and lacks advanced confrontation capabilities, such as temptation and deception of the enemy. This study proposes the combination of the high-value chess piece game method and the UCT search strategy to achieve a high-value chess piece cooperative game strategy that can be used to solve the problems of the military chess game. Practical experience shows that the high-value multipiece military chess game strategy is better than the high-value single-piece military chess game strategy.

参考文献/References:

[1] 陶九阳, 吴琳, 胡晓峰. AlphaGo技术原理分析及人工智能军事应用展望[J]. 指挥与控制学报, 2016, 2(2): 114-120
TAO Jiuyang, WU Lin, HU Xiaofeng. Principle analysis on AlphaGo and perspective in military application of artificial intelligence[J]. Journal of command and control, 2016, 2(2): 114-120
[2] CHEN J X. The evolution of computing: AlphaGo[J]. Computing in science & engineering, 2016, 18(4): 4-7.
[3] 李翔, 姜晓红, 陈英芝, 等. 基于手牌预测的多人无限注德州扑克博弈方法[J]. 计算机学报, 2018, 41(1): 47-64
LI Xiang, JIANG Xiaohong, CHEN Yingzhi, et al. Game in multiplayer no-limit texas hold’em based on hands prediction[J]. Chinese journal of computers, 2018, 41(1): 47-64
[4] 王亚杰, 邱虹坤, 吴燕燕, 等. 计算机博弈的研究与发展[J]. 智能系统学报, 2016, 11(6): 788-798
WANG Yajie, QIU Hongkun, WU Yanyan, et al. Research and development of computer games[J]. CAAI transactions on intelligent systems, 2016, 11(6): 788-798
[5] HONG Yiguang, CHEN Guanrong, BUSHNELL L. Technical communique: distributed observers design for leader-following control of multi-agent networks[J]. Automatica, 2017, 44(3): 846-850.
[6] 滕雯娟. 基于虚拟遗憾最小化算法的德州扑克机器博弈研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
TENG Wenjuan. Research on texas poker game based on counterfactual regret minimization algorithm[D]. Harbin: Harbin Institute of Technology, 2015.
[7] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double q-learning[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Arizona, USA, 2015.
[8] 史晓茹, 侯媛彬, 张涛. 不完全信息博弈的机器人对抗决策[J]. 智能系统学报, 2011, 6(2): 147-151
SHI Xiaoru, HOU Yuanbin, ZHANG Tao. The decision-making system of robots based on an incomplete information game[J]. CAAI transactions on intelligent systems, 2011, 6(2): 147-151
[9] MICHAEL L. INCZE, SCOTT R. SIDELEAU, CHRIS GAGNER, and CHARLES A. PIPPIN. (2015). Communication and collaboration of heterogeneous unmanned systems using the joint architecture for Unmanned Systems (JAUS) standards[C]//OCEANS 2015- Genova. IEEE.
[10] 乔林. 多智能体系统中的Q学习算法研究[D]. 南京: 南京邮电大学, 2012.
QIAO Lin. Study of Q-learning algorithm in multi-agent system[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2012.
[11] 梁国军, 谢垂益, 胡伶俐, 等. UCT算法在不围棋博弈中的实现[J]. 韶关学院学报, 2015, 36(8): 17-21
Liang Guojun, Xie Chuiyi, Hu Lingli, et al. An implementation of UCT algorithm for nogo game[J]. Journal of Shaoguan university, 2015, 36(8): 17-21
[12] 孟坤, 王俊, 闫桐. 一种基于经验知识的军棋博弈算法设计与实现[J]. 智能计算机与应用, 2017, 7(2): 66-69
MENG Kun, WANG Jun, YAN Tong. Design and implementation of a military chess game algorithm based on knowledge experience[J]. Intelligent computer and application, 2017, 7(2): 66-69
[13] 孙英龙. 非完美信息博弈算法研究与军棋博弈系统设计与实现[D]. 沈阳: 东北大学, 2013.
SUN Yinglong. The study on imperfect information game and design and implementation of military chess system[D]. Shenyang: Northeastern University, 2013.
[14] 王学厚. 群体智能优化的计算模式和方法研究与应用[D]. 北京: 华北电力大学, 2011.
WANG Xuehou. Research on computational mode of swarm intelligent optimization and applications[D]. Beijing: North China Electric Power University, 2011.
[15] 张小川, 桑瑞婷, 周泽红, 等. 一种基于双通道卷积神经网络的短文本分类方法[J]. 重庆理工大学学报(自然科学), 2019, 33(1): 45-52
ZHANG Xiaochuan, SANG Ruiting, ZHOU Zehong, et al. A Short Text Classification Method Based on Two Channel Convolutional Neural Network[J]. Journal of Chongqing University of Technology(Natural Science), 2019, 33(1): 45-52

相似文献/References:

[1]徐长明,南晓斐,王 骄,等.中国象棋机器博弈的时间自适应分配策略研究[J].智能系统学报,2006,1(02):39.
 XU Chang-ming,NAN Xiao-fei,WANG Jiao,et al.Adaptive time allocation strategy in computer game of Chinese Chess[J].CAAI Transactions on Intelligent Systems,2006,1(2):39.
[2]徐心和,邓志立,王骄,等.机器博弈研究面临的各种挑战[J].智能系统学报,2008,3(04):287.
 XU Xin-he,DENG Zhi-li,WANG Jiao,et al.Challenging issues facing computer game research[J].CAAI Transactions on Intelligent Systems,2008,3(2):287.
[3]张小川,唐艳,梁宁宁.采用时间差分算法的九路围棋机器博弈系统[J].智能系统学报,2012,7(03):278.
 ZHANG Xiaochuan,TANG Yan,LIANG Ningning.A 9×9 Go computer game system using temporal difference[J].CAAI Transactions on Intelligent Systems,2012,7(2):278.
[4]李学俊,王小龙,吴蕾,等.六子棋中基于局部“路”扫描方式的博弈树生成算法[J].智能系统学报,2015,10(02):267.[doi:10.3969/j.issn.1673-4785.201401022]
 LI Xuejun,WANG Xiaolong,WU Lei,et al.Game tree generation algorithm based on local-road scanning method for connect 6[J].CAAI Transactions on Intelligent Systems,2015,10(2):267.[doi:10.3969/j.issn.1673-4785.201401022]

备注/Memo

备注/Memo:
收稿日期:2018-12-11。
基金项目:国家自然科学基金项目(61702063);重庆理工大学研究生创新基金项目(ycx2018244)
作者简介:张小川,教授,中国人工智能学会机器博弈专委会主任、《CAAI Transactions on Intelligence Technology》副主编,人工智能系统研究所所长、两江人工智能学院副院长,主要研究方向为机器博弈、智能机器人、软件工程。主持纵向项目35项、横向项目45项,获省部级奖项4项。发表学术论文90余篇;王宛宛,硕士研究生,主要研究方向为人工智能、机器博弈。
通讯作者:王宛宛.E-mail:1033104010@qq.com
更新日期/Last Update: 1900-01-01