[1]陈增强,黄朝阳,孙明玮,等.基于大变异遗传算法进行参数优化整定的负荷频率自抗扰控制[J].智能系统学报,2020,15(1):41-49.[doi:10.11992/tis.201906026]
 CHEN Zengqiang,HUANG Zhaoyang,SUN Mingwei,et al.Active disturbance rejection control of load frequency based on big probability variation’s genetic algorithm for parameter optimization[J].CAAI Transactions on Intelligent Systems,2020,15(1):41-49.[doi:10.11992/tis.201906026]
点击复制

基于大变异遗传算法进行参数优化整定的负荷频率自抗扰控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年1期
页码:
41-49
栏目:
学术论文—智能系统
出版日期:
2020-01-01

文章信息/Info

Title:
Active disturbance rejection control of load frequency based on big probability variation’s genetic algorithm for parameter optimization
作者:
陈增强12 黄朝阳1 孙明玮1 孙青林1
1. 南开大学 人工智能学院, 天津 300350;
2. 天津市智能机器人重点实验室, 天津 300350
Author(s):
CHEN Zengqiang12 HUANG Zhaoyang1 SUN Mingwei1 SUN Qinglin1
1. College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
2. Key Laboratory of Intelligent Robotics of Tianjin, Tianjin 300350, China
关键词:
自抗扰控制负荷频率控制大变异遗传算法两区域互联电力系统水轮机发电速率约束调速器死区非线性非最小相位特性
Keywords:
active disturbance rejection controlload frequency controlbig probability variation’s genetic algorithmtwo-area interconnected power systemturbinegeneration rate constraintgovernor’s dead zonenonlinearnon-minimum phase characteristics
分类号:
TP272
DOI:
10.11992/tis.201906026
摘要:
本文将自抗扰控制(active disturbance rejection control,ADRC)应用到两区域互联电力系统的负荷频率控制(load frequency control,LFC)中,从具有非再热式汽轮机机组的电力系统模型推广到具有水轮机机组的以及考虑发电速率约束和调速器死区的再热式汽轮机组的电力系统模型,涉及线性、非线性和非最小相位特性3种控制对象,并使用大变异遗传算法对控制器的参数进行整定,与基于大变异遗传算法的PI控制进行仿真比较研究,仿真表明本文所提基于大变异遗传算法的负荷频率自抗扰控制动态响应快、偏差小、鲁棒性好、抗干扰能力强,对于LFC系统更为有效。
Abstract:
In this paper, the active disturbance rejection control (ADRC) is applied to the load frequency control (LFC) of the two-zone interconnected power system, which is extended from a power system model with non-reheating steam turbines to other models, one with turbines, and another consists of reheating turbines with consideration of power generation rate constraints and governor dead zones, involving three control objects of linear, nonlinear and non-minimum phase characteristics. The model is used to adjust the parameters of the controller utilizing the big probability variation’s genetic algorithm. The simulation is compared with the PI control based on the big probability variation’s genetic algorithm. The simulation shows that ADRC based on big probability variation’s genetic algorithm possesses fast dynamic response, small deviation, good robustness, strong anti-interference characteristics, which is more effective for the LFC system.

参考文献/References:

[1] 陶顺. 现代电力系统电能质量评估体系的研究[D]. 北京: 华北电力大学, 2008: 14.
TAO Shun. Study on the power quality assessment system of modern power systems[D]. Beijing: North China Electric power University, 2008: 14.
[2] ELGERD O I, FOSHA C E. Optimum megawatt-frequency control of multiarea electric energy systems[J]. IEEE transactions on power apparatus and systems, 1970(4): 556–563.
[3] SHAYEGHI H, SHAYANFAR H A, JALILI A. Load frequency control strategies: A state-of-the-art survey for the researcher[J]. Energy conversion and management, 2009, 50(2): 344–353.
[4] CHATTERJEE K. Design of dual mode PI controller for load frequency control[J]. International journal of emerging electric power systems, 2011, 11(4): 24–31.
[5] 鲁尔洁, 陈峦, 李坚, 等. 基于改进模糊控制的发电系统频率调节研究[J]. 电力系统保护与控制, 2017(8): 46–52
LU Erjie, CHEN Luan, LI Jian, et al. Research on power system frequency regulation based on improved fuzzy control[J]. Power system protection and control, 2017(8): 46–52
[6] 王亚刚, 许晓鸣. 自适应鲁棒最优PI控制器[J]. 自动化学报, 2009, 35(10): 1352–1356
WANG Yagang, XU Xiaoming. Adaptive and optimal PI controller with robustness[J]. Acta automatica sinica, 2009, 35(10): 1352–1356
[7] 孟光伟, 姚琼荟, 李槐树. 电力系统负载频率控制器的离散变结构控制设计[J]. 电力自动化设备, 2008, 28(10): 46–49
MENG Guangwei, YAO Qionghui, LI Huaishu. Load-frequency controller based on discrete variable structure control theory[J]. Electric power automation equipment, 2008, 28(10): 46–49
[8] DONDE V, PAI M A, HISKENS I A. Simulation and optimization in an AGC system after deregulation[J]. IEEE power engineering review, 2007, 21(8): 58–58.
[9] BEVRANI H. Robust power system frequency control[M]. Springer US, 2009.
[10] QUDAIH Y S, BERNARD M, MITANI Y, et al. Model predictive based load frequency control design in the presence of DFIG wind turbine[C]//International conference on electric power & energy conversion systems. 2012.
[11] 李杰, 齐晓慧, 万慧, 等. 自抗扰控制: 研究成果总结与展望[J]. 控制理论与应用, 2017, 34(3): 281–295
LI Jie, QI Xiaohui, WAN Hui, et al. Active disturbance rejection control: theoretical results summary and future researches[J]. Control theory and applications, 2017, 34(3): 281–295
[12] 韩京清. 自抗扰控制技术[J]. 前沿科学, 2017, 34(3): 281–295
HAN Jingqing. Active disturbances rejection control technique[J]. Frontier science, 2017, 34(3): 281–295
[13] 陈增强, 刘俊杰, 孙明玮. 一种新型控制方法——自抗扰控制技术及其工程应用综述[J]. 智能系统学报, 2018, 13(6): 865–877
CHEN Zengqiang, LIU Junjie, SUN Mingwei. Overview of a novel control method: active disturbance rejection control technology and its practical applications[J]. CAAI transactions on intelligent systems, 2018, 13(6): 865–877
[14] 李素, 袁志高, 王聪, 等. 群智能算法优化支持向量机参数综述[J]. 智能系统学报, 2018, 13(1): 70–84
LI Su, YUAN Zhigao, WANG Cong, et al. Optimization of support vector machine parameters based on group intelligence algorithm[J]. CAAI transactions on intelligent systems, 2018, 13(1): 70–84
[15] THOMAS B. Evolutionary computation: Toward a new philosophy of machine intelligence[J]. Complexity, 1997, 2(4): 239–251.
[16] PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE control systems, 2002, 22(3): 52–67.
[17] 马钧水. 改进遗传算法搜索性能的大变异操作[J]. 控制理论与应用, 2016, 15(3): 404–408
MA Junshui. Big mutation operation for improving search performance of genetic algorithm[J]. Control theory and applications, 2016, 15(3): 404–408
[18] WANG Y, ZHOU R, WEN C. Robust load-frequency controller design for power systems[C]//IEE proceedings C (Generation, Transmission and Distribution). IET Digital Library, 1993, 140(1): 11-16.
[19] TAN W. Tuning of PID load frequency controller for power systems[J]. Energy conversion and management, 2009, 50(6): 1465–1472.
[20] ALI E S, ABD-ELAZIM S M. Bacteria foraging optimization algorithm based load frequency controller for interconnected power system[J]. International journal of electrical power & energy systems, 2011, 33(3): 633–638.
[21] 刘永娟, 米阳, 吴晓. 单域时滞电力系统的滑模负荷频率控制[J]. 上海电力学院学报, 2015, 31(3): 293–298
LIU Yongjuan, MI Yang, WU Xiao. The sliding mode load frequency control of single area time delay power system[J]. Journal of Shanghai University of Electric Power, 2015, 31(3): 293–298
[22] 张彬文, 谭文, 李健. 水轮机负荷频率控制系统的线性自抗扰整定[J]. 电机与控制学报, 2019(1): 117–124
ZHANG Binwen, TAN Wen, LI Jian. Tuning of linear active disturbance rejection control for load frequency control systems with hydro turbines[J]. Electric machines and control, 2019(1): 117–124

相似文献/References:

[1]陈增强,刘俊杰,孙明玮.一种新型控制方法—自抗扰控制技术及其工程应用综述[J].智能系统学报,2018,13(06):865.[doi:10.11992/tis.201711029]
 CHEN Zengqiang,LIU Junjie,SUN Mingwei.Overview of a novel control method: active disturbance rejection control technology and its practical applications[J].CAAI Transactions on Intelligent Systems,2018,13(1):865.[doi:10.11992/tis.201711029]

备注/Memo

备注/Memo:
收稿日期:2019-06-14。
基金项目:国家自然科学基金项目(61973175,61573197,61973172)
作者简介:陈增强,教授,博士生导师,主要研究方向为智能控制、预测控制、自抗扰控制。曾获得天津市自然科学二等奖。发表学术论文200余篇;黄朝阳,硕士研究生,主要研究方向为自抗扰控制、智能控制、预测控制;孙明玮,教授,主要研究方向为飞行器制导与控制、自抗扰控制。曾获得国防科工委科技进步二等奖
通讯作者:陈增强.E-mail:chenzq@nankai.edu.cn
更新日期/Last Update: 1900-01-01