参考文献/References:
[1] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1987, 2(1/2/3):37-52.
[2] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. Fisherfaces:recognition using class specific linear projection[C]//Proceedings of the 4th European Conference on Computer Vision. Cambridge, UK, 1996:45-58.
[3] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791.
[4] WANG Yuan, JIA Yunde, HU Changbo, et al. Fisher non-negative matrix factorization for learning local features[C]//Proceedings of the 6th Asian Conference on Computer Vision. Jeju, Korea, 2004.
[5] ZAFEIRIOU S, TEFAS A, BUCIU I, et al. Exploiting discriminant information in nonnegative matrix factorization with application to frontal face verification[J]. IEEE transactions on neural networks, 2006, 17(3):683-695.
[6] KOTSIA I, ZAFEIRIOU S, PITAS I. A novel discriminant non-negative matrix factorization algorithm with applications to facial image characterization problems[J]. IEEE transactions on information forensics and security, 2007, 2(3):588-595.
[7] GU Quanquan, ZHOU Jie. Two dimensional maximum margin criterion[C]//IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan, 2009:1621-1624.
[8] LI Haifeng, JIANG Tao, ZHANG Keshu. Efficient and robust feature extraction by maximum margin criterion[J]. IEEE transactions on neural networks, 2006, 17(1):157-165.
[9] LU Yuwu, LAI Zhihui, XU Yong, et al. Nonnegative discriminant matrix factorization[J]. IEEE transactions on circuits and systems for video technology, 2017, 27(7):1392-1405.
[10] CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(8):1548-1560.
[11] LONG Xianzhong, LU Hongtao, PENG Yong, et al. Graph regularized discriminative non-negative matrix factorization for face recognition[J]. Multimedia tools and applications, 2014, 72(3):2679-2699.
[12] LIAO Qing, ZHANG Qian. Local coordinate based graph-regularized NMF for image representation[J]. Signal processing, 2016, 124:103-114.
[13] LI Xuelong, CUI Guosheng, DONG Yongsheng. Graph regularized non-negative low-rank matrix factorization for image clustering[J]. IEEE transactions on cybernetics, 2017, 47(11):3840-3853.
[14] SHANG Fanhua, JIAO L C, WANG Fei. Graph dual regularization non-negative matrix factorization for co-clustering[J]. Pattern recognition, 2012, 45(6):2237-2250.
[15] MENG Yang, SHANG Ronghua, JIAO Licheng, et al. Feature selection based dual-graph sparse non-negative matrix factorization for local discriminative clustering[J]. Neurocomputing, 2018, 290:87-99.
[16] EGGERT J, KORNER E. Sparse coding and NMF[C]//Proceedings of 2004 IEEE International Joint Conference on Neural Networks. Budapest, Hungary, 2004:2529-2533.
[17] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization:a geometric framework for learning from labeled and unlabeled examples[J]. Journal of machine learning research, 2006, 7(1):2399-2434.
[18] HOU C, JING W, YI W, et al. Local linear transformation embedding[J]. Neurocomputing, 2009, 72(10-12):2368-2378.
[19] LI H, LIU D, WANG D. Manifold regularized reinforcement learning[J]. IEEE transactions on neural networks & learning systems, 2017, 29(4):932-943.
[20] HOYER P O. Non-negative matrix factorization with sparseness constraints[J]. Journal of machine learning research, 2004, 5:1457-1469.
[21] NIE Feiping, HUANG Heng, CAI Xiao, et al. Efficient and robust feature selection via joint l2, 1-norms minimization[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2010:1813-1821.
相似文献/References:
[1]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(01):69.
HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2(06):69.
[2]谭 营,朱元春.反垃圾电子邮件方法研究进展[J].智能系统学报,2010,5(03):189.
TAN Ying,ZHU Yuan-chun.Advances in antispam techniques[J].CAAI Transactions on Intelligent Systems,2010,5(06):189.
[3]杨志君,叶东毅.动态学习的非负矩阵分解算法[J].智能系统学报,2010,5(04):320.
YANG Zhi-jun,YE Dong-yi.A dynamic learning algorithm based on nonnegative matrix factorization[J].CAAI Transactions on Intelligent Systems,2010,5(06):320.
[4]刘 敏,王国利.手写运动的协作基元合成分析方法[J].智能系统学报,2010,5(05):405.[doi:10.3969/j.issn.1673-4785.2010.05.005]
LIU Min,WANG Guo-li.Handwriting movement analysis by synthesis of synergic primitives[J].CAAI Transactions on Intelligent Systems,2010,5(06):405.[doi:10.3969/j.issn.1673-4785.2010.05.005]
[5]王斐,张育中,宁廷会,等.脑-机接口研究进展[J].智能系统学报,2011,6(03):189.
WANG Fei,ZHANG Yuzhong,NING Tinghui,et al.Research progress in a braincomputer interface[J].CAAI Transactions on Intelligent Systems,2011,6(06):189.
[6]刘琚,孙建德.独立分量分析的图像/视频分析与应用[J].智能系统学报,2011,6(06):495.
LIU Ju,SUN Jiande.Independent component analysisbased image/video analysis and applications[J].CAAI Transactions on Intelligent Systems,2011,6(06):495.
[7]谭营,王军.手指静脉身份识别技术最新进展[J].智能系统学报,2011,6(06):471.
TAN Ying,WANG Jun.Recent advances in finger vein based biometric techniques[J].CAAI Transactions on Intelligent Systems,2011,6(06):471.
[8]吴家伟,严京旗,方志宏,等.基于图像显著性特征的铸坯表面缺陷检测[J].智能系统学报,2012,7(01):75.
WU Jiawei,YAN Jingqi,FANG Zhihong,et al.Defect detection on a steel slab surface based on the characteristics of an image’s saliency region[J].CAAI Transactions on Intelligent Systems,2012,7(06):75.
[9]张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(04):339.
ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7(06):339.
[10]刘忠宝,王士同.从Parzen窗核密度估计到特征提取方法:新的研究视角[J].智能系统学报,2012,7(06):471.
LIU Zhongbao,WANG Shitong.From Parzen window estimation to feature extraction: a new perspective[J].CAAI Transactions on Intelligent Systems,2012,7(06):471.