[1]梁美社,米据生,赵天娜.广义优势多粒度直觉模糊粗糙集及规则获取[J].智能系统学报,2017,12(06):883-888.[doi:10.11992/tis.201706034]
 LIANG Meishe,MI Jusheng,ZHAO Tianna.Generalized dominance-based multi-granularity intuitionistic fuzzy rough set and acquisition of decision rules[J].CAAI Transactions on Intelligent Systems,2017,12(06):883-888.[doi:10.11992/tis.201706034]
点击复制

广义优势多粒度直觉模糊粗糙集及规则获取(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年06期
页码:
883-888
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
Generalized dominance-based multi-granularity intuitionistic fuzzy rough set and acquisition of decision rules
作者:
梁美社12 米据生1 赵天娜1
1. 河北师范大学 数学与信息科学学院, 河北 石家庄 050024;
2. 石家庄职业技术学院 科技发展与校企合作部, 河北 石家庄 050081
Author(s):
LIANG Meishe12 MI Jusheng1 ZHAO Tianna1
1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China;
2. Office of Science & Technology Administration, Shijiazhuang University of Applied Technology, Shijiazhuang 050081, China
关键词:
多粒度粗糙集三角模优势关系直觉模糊信息系统决策规则
Keywords:
multi-granularityrough settriangular normdominance relationintuitionistic fuzzy information systemdecision rules
分类号:
TP391
DOI:
10.11992/tis.201706034
摘要:
优势关系粗糙集模型是研究序信息系统中数据挖掘的主要方法。为了丰富现有优势关系粗糙集模型,使其更加有效地应用于实际问题,本文首先在直觉模糊决策信息系统中利用三角模和三角余模定义了3种优势关系,得到了3种优势类;其次构造了广义优势关系多粒度直觉模糊粗糙集模型,讨论了该模型的主要性质;随后给出如何从直觉模糊决策信息系统中获取逻辑连接词为“或”的决策规则;最后通过实例说明该模型在处理直觉模糊决策序关系信息系统时是有效的。
Abstract:
The dominance relation rough set model is the main method of data mining when researching order information systems. In this paper, we attempt to enrich the present model and make it more effective for practical problems using the following methods: Firstly, defining three types of dominance relations using triangular norms and co-norms in an intuitionistic fuzzy decision information system; here, three types of dominance class were obtained; secondly, establishing a generalized dominance-based multi-granularity intuitionistic fuzzy rough set model and discussing its properties; thirdly, establishing the decision rules for obtaining the logic connective “OR” in the intuitionistic fuzzy decision information system; and finally, using an example to illustrate the effectiveness of the model.

参考文献/References:

[1] ATANASSOV K T. Intuitionistic fuzzy sets[M]. Heidelberg, German: Springer-Verlag Telos, 1999: 1-324.
[2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy sets system, 1986, 20(1): 87-96.
[3] ATANASSOV K T. New operations defined over the intuitionistic fuzzy sets[J]. Fuzzy sets system, 1994, 61(2): 137-142.
[4] ZADEH L A. Fuzzy sets[J]. Information and control, 1965(8): 338-353.
[5] JENA S.P, GHOSH S.K. Intuitionistic fuzzy rough sets[J]. Notes on intuitionistic fuzzy sets, 2002, 8(1): 1-18.
[6] SAMAMTA S K, MONDAL T K. Intuitionistic fuzzy rough sets and rough intuitionistic fuzzy sets[J]. Journal of fuzzy mathemaics, 2001, 9(6): 561-582.
[7] PAWLAK Z. Rough sets[J]. International Journal of computer and information sciences, 1982, 11(5): 341-356.
[8] PAWLAK. Z. Rough sets: some extensions[J]. Information sciences, 2007, 177(1): 3-27.
[9] QIAN Y H, LIANG J Y. Rough set method based on multi-ganulations[C]//Proceedings of the 5th IEEE International Conference on Cognitive Informatics. Piscataway, 2006: 297-304.
[10] QIAN Y H, LIANG J Y, YAO Y Y, et al. MGRS: a multi-granulati on rough set[J]. Information sciences, 2010, 180(6): 949-970.
[11] QIAN Y H, LIANG J Y, Wei W. Pessimistic rough decision[J]. Journal of ZheJiang ocean university: natural science, 2010, 29(5): 440-449.
[12] QIAN Y H, LIANG J Y, DANG C Y. Incomplete multi-granulation rough set[J]. IEEE transactions on systems, man and cybernetics, part a : systems and humans, 2010, 40(2): 420-431.
[13] 桑妍丽, 钱宇华. 一种悲观多粒度粗糙集中的粒度约简算法[J]. 模式识别与人工智能, 2012, 25(3): 361-366.
SANG Yanli, QING Yuhua. A granular space reduction approach to pessimistic multi-granulation rough sets[J]. Pattern recognition and artificial intelligence, 2012, 25(3): 361-366.
[14] ZHANG M, XU W Y, YANG X B, et al. Incomplete variable multigranulation rough sets decision[J]. Applied mathematics and information sciences, 2014, 8(3): 1159-1166.
[15] XU W H, SUN W X, ZHANG X Y, et al. Multiple granulation rough set approach to ordered information systems[J]. International journal of general systems, 2012, 41(5): 475-501.
[16] YANG X B, SONG X N, DOU H L, et al. Multigranulation rough set: from crisp to fuzzy case[J]. Analyses of fuzzy mathematics and informatics, 2011, 1(1): 55-70.
[17] LIN G P, QIAN Y H, LI J J. NMGRS: neighborhood-based multigranulation rough sets[J]. International journal of approximate reasonining, 2012, 53(7): 1080-1093.
[18] QIAN Y H, ZHANG H, SANG Y L, et al. Multigranulation decision-theoretic rough sets[J]. International journal of approximate reasoning, 2014, 55(1): 225-237.
[19] GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria decision analysis[J]. European journal of operational research, 2001, 129(1): 1-47.
[20] GRECO S, MATARAZZO B, SLOWINSKI R. Fuzzy rough sets and multiple-premise gradual decision rules[J]. International journal of approx- imate reasoning, 2006, 41(2): 179-211.
[21] 翟永健, 张宏. 优势关系多粒度粗糙模糊集及决策规则获取[J]. 江苏大学学报: 自然科学版, 2012, 33(3): 310-315.
ZHAI Yongjian, ZHANG Hong, Dominance based multigranulation rough fuzzy sets and acquisition of decision rules[J]. Journal of Jiangsu university: natural science edition, 2012, 33(3): 310-315.
[22] XU Z S. Intuitionistic preference relations and their application in group decision making[J]. Information sciences, 2007, 177(11): 2363-2379.
[23] RAHMAN S. On cuts of Atanassov’s intuitionistic fuzzy sets with respect to fuzzy connectives[J]. Information sciences, 2016, 340-341(1): 262-278.
[24] KLIR G J, YUAN B. Fuzzy sets and fuzzy logic: theory and applications[M]. 5 th ed. New Delhi, India: Prentice Hall of India Private limited, 2008: 1-591.

相似文献/References:

[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(06):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3(06):492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(02):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4(06):112.
[3]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(02):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(06):40.
[4]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(06):8.
[5]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(06):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2(06):65.
[6]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(06):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[7]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(06):132.
[8]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(03):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(06):254.
[9]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10(06):273.[doi:10.3969/j.issn.1673-4785.201312008]
[10]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10(06):783.[doi:10.11992/tis.201406045]
[11]刘财辉,蔡克参.元素最小描述并集下的多粒度覆盖粗糙集模型[J].智能系统学报,2016,11(4):534.[doi:10.11992/tis.201605034]
 LIU Caihui,CAI Kecan.Multigranulation covering rough sets based on the union of minimal descriptions of elements[J].CAAI Transactions on Intelligent Systems,2016,11(06):534.[doi:10.11992/tis.201605034]
[12]苗夺谦,张清华,钱宇华,等.从人类智能到机器实现模型——粒计算理论与方法[J].智能系统学报,2016,11(6):743.[doi:10.11992/tis.201612014]
 MIAO Duoqian,ZHANG Qinghua,QIAN Yuhua,et al.From human intelligence to machine implementation model: theories and applications based on granular computing[J].CAAI Transactions on Intelligent Systems,2016,11(06):743.[doi:10.11992/tis.201612014]

备注/Memo

备注/Memo:
收稿日期:2017-06-09;改回日期:。
基金项目:国家自然科学基金项目(61573127,61300121,61502144);河北省自然科学基金项目(A2014205157);河北省高校创新团队领军人才培育计划项目(LJRC022);河北师范大学研究生创新项目基金项目(CXZZSS2017046).
作者简介:梁美社,男,1986年生,讲师,博士研究生,主要研究方向为粗糙集理论、粒计算;米据生,男,1966年生,教授、博士生导师,主要研究方向为粗糙集、概念格,近似推理;赵天娜,女,1992年生,硕士研究生,主要研究方向为粗糙集、概念格。
通讯作者:梁美社.E-mail:liangmeishe@163.com.
更新日期/Last Update: 2018-01-03