[1]冯丹,黄洋,石云鹏,等.连续型数据的辨识矩阵属性约简方法[J].智能系统学报,2017,12(03):371-376.[doi:10.11992/tis.201704032]
 FENG Dan,HUANG Yang,SHI Yunpeng,et al.A discernibility matrix-based attribute reduction for continuous data[J].CAAI Transactions on Intelligent Systems,2017,12(03):371-376.[doi:10.11992/tis.201704032]
点击复制

连续型数据的辨识矩阵属性约简方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年03期
页码:
371-376
栏目:
出版日期:
2017-06-25

文章信息/Info

Title:
A discernibility matrix-based attribute reduction for continuous data
作者:
冯丹12 黄洋2 石云鹏2 王长忠2
1. 国网葫芦岛供电公司 信息通信分公司, 辽宁 葫芦岛 125000;
2. 渤海大学 数理学院, 辽宁 锦州 121000
Author(s):
FENG Dan12 HUANG Yang2 SHI Yunpeng2 Wang Changzhong2
1. Information and Communication Branch, State Grid Power Supply Company of Huludao, Huludao 125000, China;
2. College of Mathematics and Physics, Bohai University, Jinzhou 121000, China
关键词:
邻域关系粗糙集属性约简辨识矩阵启发式算法
Keywords:
neighborhood relationrough setattribute reductiondiscernibility matrixheuristic algorithm
分类号:
TP391;TP274
DOI:
10.11992/tis.201704032
摘要:
属性约简是粗糙集理论在数据处理方面的重要应用,已有的针对连续型数据的属性约简算法主要集中在基于正域的贪心算法,该方法只考虑了一致样本和其他样本的可辨识性,而忽略了边界样本点间可区分性。为了克服基于正域算法的缺点,提出了连续型数据的辨识矩阵属性约简模型,该模型不但考虑了正域样本的一致性,同时考虑了边界样本的可分性。基于该模型,分析了属性约简结构,定义了辨识矩阵来刻画特征子集的分类能力,构造了实值型数据的属性约简启发式算法,并利用UCI标准数据集进行了验证。理论分析和实验结果表明,提出的算法能够有效地处理连续型数据,提高了数据的分类精度。
Abstract:
In data processing, attribute reduction is an important application of rough set theory. The existing methods for continuous data mainly concentrate on the greedy algorithms based on the positive region. These methods take account of only the identifiability between consistent samples and other samples while ignoring distinguishability among the boundary samples. To overcome the disadvantage based on the positive domain algorithm, this paper proposed a new method for attribute reduction using a discernibility matrix. The model considers not only the consistency of samples in the positive region but also the reparability of boundary samples. On this basis, this paper analyzes the structure of attribute reduction and defines a discernibility matrix to characterize the discernibility ability of a subset of attributes. Next, an attribute reduction algorithm was designed based on the discernibility matrix. The validity of the proposed algorithm was verified using UCI standard data sets and theoretical analysis.

参考文献/References:

[1] PAWLAK Z. Rough sets [J]. International journal of computer and information sciences, 1982, 11(5): 341-356.
[2] SKOWRON A,RAUSZER C. The discernibility matrices and functions in information systems[C]//Slowinski R. (Ed.), Intelligent Decision Support. Dordrecht, Kluwer Academic Publishers, 1992: 331-362.
[3] MI J S, WU W Z, ZHANG W X. Approaches to knowledge reduction based on variable precision rough sets model [J]. Information sciences, 2004, 159(3/4): 255-272.
[4] WU W Z, ZHANG W X. Neighborhood operator systems and approximations [J]. Information sciences, 2002, 144(1/4): 201-217.
[5] HU Q H, YU D, LIU J F, et al. Neighborhood-rough-set based heterogeneous feature subset selection [J]. Information sciences, 2008, 178(18): 3577-3594.
[6] KIM D. Data classification based on tolerant rough set [J]. Pattern recognition, 2001, 34(8): 1613-1624.
[7] ZHAO H, WANG P, HU Q H. Cost-sensitive feature selection based on adaptive neighborhood granularity with multi-level confidence [J]. Information sciences, 2016, 366: 134-149.
[8] CHEN Y, ZHANG Z, ZHENG J, et al. Gene selection for tumor classification using neighborhood rough sets and entropy measures [J]. Journal of biomedical informatics, 2017, 67:59-68
[9] ZHU P, HU Q H. Adaptive neighborhood granularity selection and combination based on margin distribution optimation [J]. Information sciences, 2013, 249:1-12.
[10] 鲍丽娜,丁世飞, 许新征, 等. 基于邻域粗糙集的极速学习机算法[J]. 济南大学学报,2015, 29(5): 367-371.BAO Lina, DING Shifei, XU Xinzheng, et al. Extreme learning machine algorithm based on neighborhood rough sets[J]. Journal of jinan university, 2015, 29(5): 367-371.
[11] 谢娟英, 李楠, 乔子芮. 基于邻域粗糙集的不完整决策系统特征选择算法[J]. 南京大学学报,2016, 47:384-390.XIE Juanying, LI Nan, QIAO Zirui. A feature selection algorithm based on neighborhood rough sets for incomplete information systems[J]. Journal of Nanjing university, 2016, 47:384-390.
[12] 徐伟华. 序信息系统与粗糙集[M]. 北京: 科学出版社, 2013.
[13] GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets methodology for sorting problems in presence of multiple attributes and criteria[J]. European journal of operational research, 2002, 38:247-259.
[14] WANG C, HE Q, CHEN D G, et al. A novel method for attribute reduction of covering decision tables[J]. Information sciences, 2014, 254: 181-196.
[15] WANG C, SHAO M, SUN B, et al. An improved attribute reduction scheme with covering based rough sets[J]. Applied soft computing, 2015, 26(1): 235-243.
[16] ZHU W, WANG F Y. Reduction and maximization of covering generalized rough sets[J]. Information sciences, 2003, 152: 217-230.
[17] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International journal of general systems, 1990, 17: 191-208.
[18] WANG C, QI Y, HU Q, et al. A fitting model for feature selection with fuzzy rough sets[J]. IEEE transaction on fuzzy systems, 2016,99: 1-1.
[19] WANG C,SHAO M, QIAN Y. Feature subset selection based on fuzzy neighborhood rough sets[J]. Knowledge-based systems, 2016, 111(1): 173-179.
[20] CHEN D G, ZHANG L, ZHAO S Y, et al. A novel algorithm for finding reducts with fuzzy rough sets[J]. IEEE transaction on fuzzy systems, 2013, 20(2): 385-389.
[21] WANG X Z, ZHAI J H, LU S X. Induction of multiple fuzzy decision trees based on rough set technique[J]. Information sciences, 2008, 178(16): 3188-3202.
[22] ZHAO S Y, TSANG C C, CHEN D. Building a rule-based classifier by using fuzzy rough set technique[J]. IEEE transaction on knowledge and data engineering, 2010, 22(5): 624-638.

相似文献/References:

[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(06):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3(03):492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(02):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4(03):112.
[3]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(02):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(03):40.
[4]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(03):8.
[5]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(06):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2(03):65.
[6]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(03):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[7]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(03):132.
[8]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(03):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(03):254.
[9]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10(03):273.[doi:10.3969/j.issn.1673-4785.201312008]
[10]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10(03):783.[doi:10.11992/tis.201406045]
[11]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(02):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9(03):210.[doi:10.3969/j.issn.1673-4785.201307014]

备注/Memo

备注/Memo:
收稿日期:2017-04-23。
基金项目:国家自然科学基金项目(61572082,61673396,61473111,61363056);辽宁省教育厅项目(LZ2016003);辽宁省自然科学基金项目(2014020142);辽宁省高校创新团队计划项目(LT2014024).
作者简介:冯丹,女,1977年生,高级工程师,主要研究方向为计算机信息管理、数据挖掘。已发表学术论文10余篇;黄洋,女,1994年生,硕士研究生,主要研究方向为粒计算与数据挖掘;石云鹏,男,1994年生,硕士研究生,主要研究方向为粒计算与数据挖掘。
通讯作者:王长忠.E-mail:changzhongwang@126.com.
更新日期/Last Update: 2017-06-25