[1]杨迪,郭晨,朱玉华,等.欠驱动船舶神经网络自适应路径跟踪控制[J].智能系统学报,2018,13(02):254-260.[doi:10.11992/tis.201611011]
 YANG Di,GUO Chen,ZHU Yuhua,et al.Neural network adaptive path tracking control for underactuated ships[J].CAAI Transactions on Intelligent Systems,2018,13(02):254-260.[doi:10.11992/tis.201611011]
点击复制

欠驱动船舶神经网络自适应路径跟踪控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年02期
页码:
254-260
栏目:
出版日期:
2018-04-15

文章信息/Info

Title:
Neural network adaptive path tracking control for underactuated ships
作者:
杨迪1 郭晨2 朱玉华1 付思1
1. 沈阳工业大学 化工过程自动化学院, 辽宁 辽阳 111003;
2. 大连海事大学 船舶自动化仿真器研究所, 辽宁 大连 116026
Author(s):
YANG Di1 GUO Chen2 ZHU Yuhua1 FU Si1
1. College of Chemical Process Atomation, Shenyang University of Technology, Liaoyang 111003, China;
2. Institute of Ship Automation and Simulator, Dalian Maritime University, Dalian 116026, China
关键词:
欠驱动船舶参数未知反演设计法自适应控制神经网络路径跟踪Lyapunov函数最终一致有界
Keywords:
underactuated shipparameter uncertaintiesbacksteppingadaptive controlneural networkspath followingLyapunov functionultimately uniform boundedness
分类号:
TP391
DOI:
10.11992/tis.201611011
摘要:
针对模型参数未知的欠驱动船舶路径跟踪问题,将神经网络技术与反演设计法相结合,提出一种神经网络稳定自适应控制方法。首先根据运动学误差方程和线性变换确定辅助的前进速度和艏摇角,然后利用神经网络逼近技术对模型中任意不确定因素进行补偿,设计自适应控制律,使得实际的前进速度和艏摇角分别收敛到辅助值。应用Lyapunov函数证明了船舶路径跟踪闭环系统的误差信号最终一致有界。仿真结果表明,利用设计的控制律可以迫使欠驱动船舶跟踪曲线和直线路径,并且具有较强的鲁棒性。
Abstract:
Considering path-following problems of underactuated ships with parameter uncertainties, the nerve network technology was combined with the backstepping method for proposing a stable nerve-network adaptive control method. Firstly, based on kinematics error equations and linear transformation, auxiliary surge velocity and heading angle were determined; then the nerve network approximation technology was utilized to compensate for any uncertainties in the model, an adaptive control law was designed, so as to make actual surge velocity and heading angle converge to the auxiliary values respectively. By using the Lyapunov function, it was proved that the ultimately uniform boundedness of the error signals in the closed-loop path following system of ship. Numerical simulation results show that, the designed law can force underactuated ship to follow curve and straight path, it has strong robustness.

参考文献/References:

[1] 郭晨, 汪洋, 孙富春, 等. 欠驱动水面船舶运动控制研究综述[J]. 控制与决策, 2009, 24(3): 321-329.
GUO Chen, WANG Yang, SUN Funchun, et al. Survey for motion control of underactuated surface vessels[J]. Control and decision, 2009, 24(3): 321-329.
[2] ZHENG Zewei, SUN Liang. Path following control for marine surface vessel with uncertainties and input saturation[J]. Neurocomputing, 2016, 177: 158-167.
[3] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces[J]. IEEE transactions on control systems technology, 2015, 23(2): 820-827.
[4] CHOMMAM J, MNIF F, DERBEL N. Global stabilisation and tracking control of underactuated surface vessels[J]. IET control theory and applications, 2010, 4(1): 71-88.
[5] DO K D, PAN J. Underactuated ships follow smooth paths with integral actions and without velocity measurements for feedback: theory and experiments[J]. IEEE transactions on control systems technology, 2006, 14(2): 308-322.
[6] JIANG Zhongping. Global tracking control of underactuated ships by Lyapunov’s direct method[J]. Automatica, 2002, 38(2): 301-309.
[7] DO K D, JIANG Z P, PAN J. Underactuated ship global tracking under relaxed conditions[J]. IEEE transactions on automatic control, 2002, 47(9): 1529-1536.
[8] LI Zhen, SUN Jing, OH S. Design, analysis and experimental validation of a robust nonlinear path following controller for marine surface vessels[J]. Automatica, 2009, 45(7): 1649-1658.
[9] POMET J B, PRALY L. Adaptive nonlinear regulation: estimation from the Lyapunov equation[J]. IEEE transactions on automatic control, 1992, 37(6): 729-740.
[10] DO K D, PAN J. Global robust adaptive path following of underactuated ships[J]. Automatica, 2006, 42(10): 1713-1722.
[11] DO K D, PAN J. Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices[J]. Automatica, 2005, 41(1): 87-95.
[12] LIU Lu, WANG Dan, PENG Zhouhua. Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances[J]. Neurocomputing, 2016, 173: 799-808.
[13] SHOJAEI K. Neural adaptive robust control of underactuated marine surface vehicles with input saturation[J]. Applied ocean research, 2015, 53: 267-278.
[14] MENG Wei, GUO Chen. Global sliding mode based adaptive neural network path following control for underactuated surface vessels with uncertain dynamics[C]//Proceedings of the 3th International conference on Intelligent Control and Information Processing. [S.l.], 2012: 40-45.
[15] 段海庆, 朱齐丹. 基于反步自适应神经网络的船舶航迹控制[J]. 智能系统学报, 2012, 7(3): 259-264.
DUAN Haiqing, ZHU Qidan. Trajectory tracking control of ships based on an adaptive backstepping neural network[J]. CAAI transactions on intelligent systems, 2012, 7(3): 259-264.
[16] 刘杨, 郭晨, 沈智鹏, 等. 欠驱动船舶路径跟踪的神经网络稳定自适应控制[J]. 控制理论与应用, 2010, 27(2): 169-174.
LIU Yang, GUO Chen, SHEN Zhipeng, et al. Stable adaptive neural network control of path following for underactuated ships[J]. Control theory and applications, 2010, 27(2): 169-174.
[17] FOSSEN T I. Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles[M]. Trondheim, Norway: Marine Cybernetics, 2002: 35-129.
[18] DO K D, JIANG Z P, PAN J. Universal controllers for stabilization and tracking of underactuated ships[J]. Systems and control letters, 2002, 47(4): 299-317.
[19] PARK J, SANDBERG I W. Universal approximation using radial-basis-function networks[J]. Neural computation, 1991, 3(2): 246-257.
[20] CHWA D. Global tracking control of underactuated ships with input and velocity constraints using dynamic surface control method[J]. IEEE transactions on control systems technology, 2011, 19(6): 1357-1370.
[21] DO K D, PAN J. Robust path-following of underactuated ships: theory and experiments on a model ship[J]. Ocean engineering, 2006, 33(10): 1354-1372.
[22] 叶松, 陈永冰, 周岗, 等. 海浪干扰对船舶航向影响规律研究[J]. 舰船电子工程, 2015, 35(1): 65-67.
YE Song, CHEN Yongbing, ZHOU Gang, et al. Effect of waves interference on ship course[J]. Ship electronic engineering, 2015, 35(1): 65-67.

备注/Memo

备注/Memo:
收稿日期:2016-11-08。
基金项目:国家自然科学基金项目(51579024, 61374114).
作者简介:杨迪,男,1989年生,讲师,主要研究方向为智能控制理论与应用、欠驱动船舶运动控制;郭晨,男,1956年生,教授,博士生导师,研究方向为船舶自动控制系统、智能控制理论与应用;朱玉华,女,1971年生,副教授,主要研究方向为现代控制理论、最优控制。
通讯作者:杨迪.E-mail:yyaaid@163.com.
更新日期/Last Update: 1900-01-01