[1]刘帅师,郭文燕,张言,等.鲁棒的正则化编码随机遮挡表情识别[J].智能系统学报,2018,13(02):261-268.[doi:10.11992/tis.201609002]
 LIU Shuaishi,GUO Wenyan,ZHANG Yan,et al.Recognition of facial expression in case of random shielding based on robust regularized coding[J].CAAI Transactions on Intelligent Systems,2018,13(02):261-268.[doi:10.11992/tis.201609002]
点击复制

鲁棒的正则化编码随机遮挡表情识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年02期
页码:
261-268
栏目:
出版日期:
2018-04-15

文章信息/Info

Title:
Recognition of facial expression in case of random shielding based on robust regularized coding
作者:
刘帅师 郭文燕 张言 程曦
长春工业大学 电气与电子工程学院, 吉林 长春 130000
Author(s):
LIU Shuaishi GUO Wenyan ZHANG Yan CHENG Xi
College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130000, China
关键词:
随机遮挡正则化编码自动更新权重表情识别
Keywords:
random shieldingregularized codingautomatic update of weightrecognition of facial expression
分类号:
TP391.4
DOI:
10.11992/tis.201609002
摘要:
为了提高随机遮挡下人脸表情的识别率,提出一种新的人脸表示模型,即鲁棒的正则化编码,通过正则回归系数对给定信号进行鲁棒回归。首先,为了减少遮挡对人脸表情识别系统的影响,待识别表情图像的每个像素点将被分配不同的权重;然后,由于被遮挡部分像素点应分配较小的值,通过连续迭代直到权重收敛于设定的权重阈值;最后,待测图像的稀疏表示将通过最优权重矩阵计算,且待测表情图像分类结果由训练样本逼近待测图像的最小残差决定。应用该方法在日本的JAFFE表情数据库和Cohn-Kanade数据库上取得较理想的结果,且实验结果表明该方法对随机遮挡表情识别具有鲁棒性。
Abstract:
In order to improve facial expression recognition rate under the random shielding, a new face representation model was proposed: robust regularized coding. Regularized regression coefficients are used for carrying out robust regression for the given signals. Firstly, in order to reduce the influence of shielding on facial expression identification system, all pixels of the expression image to be identified will be assigned with different weights; then, because the occluded pixels should have lower weight values, hence, successive iteration is applied until the weight converges to the set weight threshold; finally, the sparse representation of image to be tested can be calculated by using the optimal weight matrix, in addition, the classified results of the expression image to be tested are determined by the minimal residual that the training samples approximate to the test image. The proposed method achieved an ideal performance in Japanese JAFFE expression database and Cohn-Kanade database, in addition, the experimental results show that the method is robust for the recognition of the facial expression randomly shielded.

参考文献/References:

[1] MERY D, BOWYER K. Face recognition via adaptive sparse representations of random patches[C]//IEEE International Workshop on Information Forensics and Security. London, UK, 2015: 13-18.
[2] WANG J, LU C, WANG M, et al. Robust face recognition via adaptive sparse representation[J]. IEEE transactions on cybernetics, 2014, 44(12): 2368.
[3] 赵军, 赵艳, 杨勇,等. 基于降维的堆积降噪自动编码机的表情识别方法[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(6): 844-848.
ZHAO Jun, ZHAO Yan, YANG Yong, et al. Facial expression recognition method based on stacked denoising auto-encoders and feature reduction[J]. Journal of Chongqing university of posts and telecommuncaitions: natual science edtion, 2016, 28(6): 844-848.
[4] KOTSIA I, PITAS I, ZAFEIRIOU S, et al. Novel multiclass classifiers based on the minimization of the within-class variance[J]. IEEE transactions on neural networks, 2009, 20(1): 14-34.
[5] TARRéS F, RAMA A, TORRES L. A novel method for face recognition under partial occlusion or facial expression variations[C]//Proceedings of the 47th International Symposium ELMAR. Zadar, Croatia, 2005: 163-166.
[6] KOTSIA I, BUCIU I, PITAS I. An analysis of facial expression recognition under partial facial image occlusion[J]. Image and vision computing, 2008, 26(7): 1052-1067.
[7] ZHANG Ligang, TJONDRONEGORO D, CHANDRAN V. Toward a more robust facial expression recognition in occluded images using randomly sampled Gabor based templates[C]//Proceedings of 2011 IEEE International Conference on Multimedia and Expo. Barcelona, Spain, 2011: 1-6.
[8] 王晓华,李瑞静,胡敏,等.融合局部特征的面部遮挡表情识别[J].中国图象图形学报, 2016, 21 (11) :1473-1482.
WANG Xiaohua, LI Ruijing, HU Min, et al. Occluded facial expression recognition based on the fusion of local features[J]. Journal of image and graphics, 2016, 21(11): 1473-1482.
[9] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(2): 210-227.
[10] 朱明旱, 李树涛, 叶华. 基于稀疏表示的遮挡人脸表情识别方法[J]. 模式识别与人工智能, 2014, 27(8): 708-712.
ZHU Minghui, LI Shutao, YE hua. An occluded facial expression recognition method based on sparse representation[J]. Pattern recognition and artificial intelligence, 2014, 27(8): 708-712.
[11] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(2): 210-227.
[12] CAO J, ZHANG K, LUO M, et al. Extreme learning machine and adaptive sparse representation for image classification.[J]. Neural networks the official journal of the international neural network society, 2016, 81(C): 91.
[13] ZHANG Jian, JIN Rong, YANG Yiming. Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization[C]//Procee-dings of the Twentieth International Conference on Machine Learning. Washington, DC, USA, 2003: 888-895.
[14] LIU Shuaishi, ZHANG Yan, LIU Keping, et al. Facial expression recognition under partial occlusion based on Gabor multi-orientation features fusion and local Gabor binary pattern histogram sequence[C]//Proceedings of the 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Beijing, China, 2013: 218-222.
[15] LIU Licheng, CHEN Long, CHEN C L. Weighted joint sparse representation for removing mixed noise in image[J]. IEEE transactions on cybernetics includes computational approaches to the field of cybernetics, 2016: 1-12.
[16] YANG M, SONG T, LIU F, et al. Structured regularized robust coding for face recognition[J]. IEEE transactions on image processing a publication of the IEEE signal processing society, 2013, 22(5): 1753-1766.
[17] 罗元, 吴彩明, 张毅. 基于PCA与SVM结合的面部表情识别的智能轮椅控制[J]. 计算机应用研究, 2012, 29(8): 3166-3168.
LUO Yuan, WU Caiming, ZHANG Yi, et al. Facial expression recognition based on principal component analysis and support vector machine applied in intelligent wheelchair[J]. The research and application of computer, 2012, 29(8): 3166-3168.

备注/Memo

备注/Memo:
收稿日期:2016-09-06。
基金项目:吉林省教育厅“十三五”科学技术项目(JJKH20170571KJ).
作者简介:刘帅师,女,1981年生,副教授,博士,主要研究方向为模式识别、计算机视觉;郭文燕,女,1991年生,硕士研究生,主要研究方向为模式识别、机器学习;张言,男,1989年生,硕士研究生,主要研究方向为模式识别、机器学习。
通讯作者:刘帅师.E-mail:liu-shuaishi@126.com.
更新日期/Last Update: 1900-01-01