[1]权美香,朴松昊,李国.视觉SLAM综述[J].智能系统学报,2016,11(6):768-776.[doi:10.11992/tis.201607026]
 QUAN Meixiang,PIAO Songhao,LI Guo.An overview of visual SLAM[J].CAAI Transactions on Intelligent Systems,2016,11(6):768-776.[doi:10.11992/tis.201607026]
点击复制

视觉SLAM综述

参考文献/References:
[1] DAVISON A J. SLAM with a single camera[C]//Proceedings of Workshop on Concurrent Mapping an Localization for Autonomous Mobile Robots in Conjunction with ICRA. Washington, DC, USA, 2002:18-27.
[2] DAVISON A J. Real-time simultaneous localisation and mapping with a single camera[C]//Proceedings of the Ninth IEEE International Conference on Computer Vision. Washington, DC, USA, 2003:1403-1410.
[3] DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM:real-time single camera SLAM[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6):1052-1067.
[4] CIVERA J, DAVISON A J, MONTIEL J M M. Inverse depth parametrization for monocular SLAM[J]. IEEE transactions on robotics, 2008, 24(5):932-945.
[5] MARTINEZ-CANTIN R, CASTELLANOS J A. Unscented SLAM for large-scale outdoor environments[C]//Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alberta, Canada, 2005:3427-3432
[6] CHEKHLOV D, PUPILLI M, MAYOL-CUEVAS W, et al. Real-time and robust monocular SLAM using predictive multi-resolution descriptors[C]//Proceedings of the Second International Conference on Advances in Visual Computi. Lake Tahoe, USA, 2006:276-285.
[7] HOLMES S, KLEIN G, MURRAY D W. A square root unscented kalman filter for visual monoSLAM[C]//Proceedings of 2008 International Conference on Robotics and Automation, ICRA. Pasadena, California, USA, 2008:3710-3716.
[8] SIM R, ELINAS P, GRIFFIN M, et al. Vision-based SLAM using the Rao-Blackwellised particle filter[J]. IJCAI workshop on reasoning with uncertainty in robotics, 2005, 9(4):500-509.
[9] LI Maohai, HONG Bingrong, CAI Zesu, et al. Novel Rao-Blackwellized particle filter for mobile robot SLAM using monocular vision[J]. International journal of intelligent technology, 2006, 1(1):63-69.
[10] KLEIN G, MURRAY D. Parallel Tracking and Mapping for Small AR Workspaces[C]//IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan, 2007:225-234.
[11] KLEIN G, MURRAY D. Improving the agility of keyframe-based SLAM[C]//European Conference on Computer Vision. Marseille, France, 2008:802-815.
[12] MUR-ARTAL R, TARDÓS J D. Fast relocalisation and loop closing in keyframe-based SLAM[C]//IEEE International Conference on Robotics and Automation. New Orleans, LA, 2014:846-853.
[13] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM:A Versatile and Accurate Monocular SLAM System[J]. IEEE transactions on robotics, 2015, 31(5):1147-1163.
[14] KHOSHELHAM K, ELBERINK S O. Accuracy and resolution of Kinect depth data for indoor mapping applications[J]. Sensors, 2012, 12(2):1437-1454.
[15] HOGMAN V. Building a 3-D Map from RGB-D sensors[D]. Stockholm, Sweden:Royal Institute of Technology, 2012.
[16] HENRY P, KRAININ M, HERBST E, et al. RGB-D mapping:Using depth cameras for dense 3-D modeling of indoor environments[C]//12th International Symposium on Experimental Robotics. Berlin, Germany, 2014:477-491.
[17] DRYANOVSKI I, VALENTI R G, XIAO J Z. Fast visual odometry and mapping from RGB-D data[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA, 2013:2305-2310.
[18] HENRY P, KRAININ M, HERBST E, et al. RGB-D mapping:using depth cameras for dense 3-D modeling of indoor environments[M]//KHATIB O, KUMAR V, PAPPAS G J. Experimental Robotics. Berlin Heidelberg:Springer, 2014:647-663.
[19] HENRY P, KRAININ M, HERBST E, et al. RGB-D Mapping:Using Depth Cameras for Dense 3-D Modeling of Indoor Environments[C]//12th International Symposium on Experimental Robotics. Berlin Germany, 2014:477-491.
[20] HENRY P, KRAININ M, HERBST E, et al. RGB-D mapping:Using Kinect-style depth cameras for dense 3-D modeling of indoor environments[J]. International journal of robotics research, 2012, 31(5):647-663.
[21] ENGELHARD N, ENDRES F, HESS J. Real-time 3-D visual SLAM with a hand-held RGB-D camera[C]//Proceeedings of the RGB-D workshop on 3-D Perception in Robotics at the European Robotics Forum. Våsterås, Sweden, 2011.
[22] STVHMER J, GUMHOLD S, CREMERS D. Real-time dense geometry from a handheld camera[C]//GOESELE M, ROTH S, KUIJPER A, et al. Pattern Recognition. Berlin Heidelberg:Springer, 2010:11-20.
[23] ENGEL J, STURM J, CREMERS D. Semi-Dense Visual Odometry for a Monocular Camera[C]//International Conference on Computer Vision. Sydney, NSW, 2013:1449-1456.
[24] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM:Dense tracking and mapping in real-time[C]//International Conference on Computer Vision. Barcelona, Spain, 2011:2320-2327.
[25] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO:Fast semi-direct monocular visual odometry[C]//2014 IEEE International Conference onRobotics and Automation. Hong Kong, China, 2014:15-22.
[26] ENGEL J, SCHÖPS T, CREMERS D. LSD-SLAM:Large-Scale Direct Monocular SLAM[M]//FLEET D, PAJDLA T, SCHIELE B, et al, eds. Computer Vision-ECCV 2014. Switzerland:Springer International Publishing, 2014:834-849.
[27] NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion:Real-time dense surface mapping and tracking[C]//IEEE International Symposium on Mixed and Augmented Reality. Basel, Switzerland, 2011:127-136.
[28] GOKHOOL T, MEILLAND M, RIVES P, et al. A dense map building approach from spherical RGBD images[C]//International Conference on Computer Vision Theory and Applications. Lisbon, Portugal, 2014:1103-1114.
[29] KERL C, STURM J, CREMERS D. Dense visual SLAM for RGB-D cameras[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013:2100-2106.
[30] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2):91-110.
[31] BAY H, TUYTELAARS T, VAN GOOL L. SURF:speeded up robust features[M]//LEONARDIS A, BISCHOF H, PINZ A. Computer Vision-ECCV 2006. Berlin Heidelberg:Springer, 2006.
[32] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:An efficient alternative to SIFT or SURF[C]//International Conference on Computer Vision. Barcelona, Spain, 2011:2564-2571.
[33] ALI A M, JAN NORDIN M. SIFT based monocular SLAM with multi-clouds features for indoor navigation[C]//2010 IEEE Region 10 Conference TENCON. Fukuoka, 2010:2326-2331.
[34] WU E Y, ZHAO L K, GUO Y P, et al. Monocular vision SLAM based on key feature points selection[C]//2010 IEEE International Conference on Information and Automation (ICIA). Harbin, China, 2010:1741-1745.
[35] CHEN C H, CHAN Y P. SIFT-based monocluar SLAM with inverse depth parameterization for robot localization[C]//IEEE Workshop on Advanced Robotics and Its Social Impacts, 2007. Hsinchu, China, 2007:1-6.
[36] Zhu D X. Binocular Vision-SLAM Using Improved SIFT Algorithm[C]//20102nd International Workshop on Intelligent Systems and Applications (ISA). Wuhan, China, 2010:1-4.
[37] ZHANG Z Y, HUANG Y L, LI C, et al. Monocular vision simultaneous localization and mapping using SURF[C]//WCICA 2008. 7th World Congress on Intelligent Control and Automation. Chongqing, China, 2008:1651-1656.
[38] YE Y. The research of SLAM monocular vision based on the improved surf feather[C]//International Conference on Computational Intelligence and Communication Networks. Hongkong, China, 2014:344-348.
[39] WANG Y T, FENG Y C. Data association and map management for robot SLAM using local invariant features[C]//2013 IEEE International Conference on Mechatronics and Automation. Takamatsu, 2013.
[40] ROSTEN E, DRUMMOND T. Machine Learning for High-Speed Corner Detection[M]//LEONARDIS A, BISCHOF H, PINZ A, et al. European Conference on Computer Vision. Berlin Heidelberg:Springer, 2006:430-443.
[41] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF:Binary Robust Independent Elementary Features[C]//European Conference on Computer Vision. Crete, Greece, 2010:778-792.
[42] FEN X, ZHEN W. An embedded visual SLAM algorithm based on Kinect and ORB features[C]//201534th Chinese Control Conference. Hangzhou, China, 2015:6026-6031.
[43] XIN G X, ZHANG X T, WANG X, et al. A RGBD SLAM algorithm combining ORB with PROSAC for indoor mobile robot[C]//20154th International Conference on Computer Science and Network Technology (ICCSNT). Harbin, China, 2015:71-74.
[44] LI J, PAN T S, TSENG K K, et al. Design of a monocular simultaneous localisation and mapping system with ORB feature[C]//International Conference on Multimedia and Expo (ICME), San Jose, California, USA, 2013:1-4.
[45] EADE E, DRUMMOND T. Edge landmarks in monocular SLAM[J]. Image and vision computing, 2009, 27(5):588-596.
[46] KLEIN G, MURRAY D. Improving the agility of keyframe-based SLAM[C]//European Conference on Computer Vision. Marseille, France, 2008:802-815.
[47] CONCHA A, CIVERA J. Using superpixels in monocular SLAM[C]//IEEE International Conference on Robotics and Automation. New Orleans, LA, 2014:365-372.
[48] SCHINDLER G, BROWN M, SZELISKI R. City-Scale Location Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Ezhou, China, 2007:1-7.
[49] ULRICH I, NOURBAKHSH I. Appearance-based place recognition for topological localization[C]//IEEE International Conference on Robotics and Automation. Anchorage, Alaska, 2010:1023-1029.
[50] NEIRA J, RIBEIRO M I, TARDOS J D. Mobile robot localization and map building using monocular vision[C]//Proceedings of the 5th International Symposium on Intelligent Robotic Systems. Pisa, Italy, 1997:275-284.
[51] WILLIAMS B, CUMMINS M, NEIRA J, et al. A comparison of loop closing techniques in monocular SLAM[J]. Robotics and autonomous systems, 2009, 57(12):1188-1197.
[52] MUR-ARTAL R, TARDOS J D. ORB-SLAM:Tracking and mapping recognizable features[C]//IEEE International Conference on Robotics and Automation (ICRA). Berkeley, CA, USA, 2014.
[53] CUMMINS M, NEWMAN P. Accelerated appearance-only SLAM[C]//IEEE International Conference on Robotics and Automation. Pasadena, California, USA, 2008:1828-1833.
[54] CLEMENTE L A, DAVISON A J, REID I D, et al. Mapping Large Loops with a Single Hand-Held Camera.[C]//Robotics:Science and Systems. Atlanta, GA, USA, 2007.
[55] CUMMINS M, NEWMAN P. FAB-MAP:Probabilistic Localization and Mapping in the Space of Appearance[J]. International Journal of Robotics Research, 2008, 27(6):647-665.
[56] NISTER D, STEWENIUS H. Scalable Recognition with a Vocabulary Tree[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06). New York, NY, USA, 2006:2161-2168.
[57] ANGELI A, FILLIAT D, DONCIEUX S, et al. A fast and incremental method for loop-closure detection using bags of visual words[J]. IEEE transactions on robotics, 2008, 24(5):1027-1037.
[58] CUMMINS M, NEWMAN P. Highly scalable appearance-only SLAM-FAB-MAP 2.0[C]//Robotics:Science and Systems V, University of Washington. Seattle, USA, 2009.
[59] GALVEZ-LÓPEZ D, TARDOS J D. Bags of binary words for fast place recognition in image sequences[J]. IEEE Transactions on robotics, 2012, 28(5):1188-1197.
[60] EADE E D, DRUMMOND T W. Unified loop closing and recovery for real time monocular SLAM[C]//British Machine Vision Conference. Leeds, UK, 2008:1-10.
[61] GÁLVEZ-LÓPEZ D, TARDOS J D. Real-time loop detection with bags of binary words[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, California, USA, 2011:51-58.
[62] CUMMINS M, NEWMAN P. Appearance-only SLAM at large scale with FAB-MAP 2.0[J]. International journal of robotics research, 2011, 30(9):1100-1123.
[63] LOWE D G. Distinctive Image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2):91-110.
[64] TRIGGS B, MCLAUCHLAN P F, HARTLEY R I, et al. Bundle Adjustment-A Modern Synthesis[M]//TRIGGS B, ZISSERMAN A, SZELISKI R. Vision Algorithms:Theory and Practice. Berlin Heidelberg:Springer, 2000:298-372.
[65] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. 2nd ed. Cambridge U K:Cambridge University Press, 2003.
[66] KVMMERLE R, GRISETTI G, STRASDAT H. G2o:A general framework for graph optimization[C]//IEEE International Conference on Robotics and Automation. Shanghai, China, 2011:3607-3613.
[67] STRASDAT H, MONTIEL J M M, DAVISON A J. Scale drift-aware large scale monocular SLAM[C]//Proceedings of Robotics:Science and Systems. Zaragoza, Spain, 2010.
[68] STRASDAT H, DAVISON A J, MONTIEL J M M, et al. Double window optimisation for constant time visual SLAM[C]//International Conference on Computer Vision. Barcelona, Spain, 2011:2352-2359.
[69] MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA). Roma, Italy, 2007.
[70] MOURIKIS A I, ROUMELIOTIS S I. A dual-layer estimator architecture for long-term localization[C]//Proceedings of the 2008 Workshop on Visual Localization for Mobile Platforms at CVPR. Anchorage, Alaska, 2008.
[71] LEUTENEGGER S, FURGALE P, RABAUD V, et al. Keyframe-based visual-inertial slam using nonlinear optimization[C]//Proceedings of 2013 Robotics:Science and Systems (RSS). Berlin, Germany, 2013.
[72] Google. Project tango. URL https://www.google.com/atap/projecttango/.
[73] ?BONTAR J, LE CUN Y. Stereo matching by training a convolutional neural network to compare image patches[J]. The journal of machine learning research, 2015, 17(1):2287-2318.
[74] SVNDERHAUF N, SHIRAZI S, DAYOUB F. On the performance of ConvNet features for place recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Hamburg, Germany, 2015:4297-4304.
[75] COSTANTE G, MANCINI M, VALIGI P, et al. Exploring representation learning with CNNs for frame-to-frame ego-motion estimation[J]. IEEE robotics and automation letters, 2016, 1(1):18-25.
[76] KENDALL A, CIPOLLA R. Modelling uncertainty in deep learning for camera relocalization[C]//2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden, 2016:4762-4769.
相似文献/References:
[1]顾照鹏,刘宏.单目视觉同步定位与地图创建方法综述[J].智能系统学报,2015,10(4):499.[doi:10.3969/j.issn.1673-4785.201503003]
 GU Zhaopeng,LIU Hong.A survey of monocular simultaneous localization and mapping[J].CAAI Transactions on Intelligent Systems,2015,10():499.[doi:10.3969/j.issn.1673-4785.201503003]
[2]蒲兴成,谭少峰,张毅.基于改进FAST算法的移动机器人导航[J].智能系统学报,2014,9(4):419.[doi:10.3969/j.issn.1673-4785.201305076]
 PU Xingcheng,TAN Shaofeng,ZHANG Yi.Research on the navigation of mobile robots based on the improved FAST algorithm[J].CAAI Transactions on Intelligent Systems,2014,9():419.[doi:10.3969/j.issn.1673-4785.201305076]
[3]杨会成,朱文博,童英.基于车内外视觉信息的行人碰撞预警方法[J].智能系统学报,2019,14(4):752.[doi:10.11992/tis.201801016]
 YANG Huicheng,ZHU Wenbo,TONG Ying.Pedestrian collision warning system based on looking-in and looking-out visual information analysis[J].CAAI Transactions on Intelligent Systems,2019,14():752.[doi:10.11992/tis.201801016]
[4]王霞,左一凡.视觉SLAM研究进展[J].智能系统学报,2020,15(5):825.[doi:10.11992/tis.202004023]
 WANG Xia,ZUO Yifan.Advances in visual SLAM research[J].CAAI Transactions on Intelligent Systems,2020,15():825.[doi:10.11992/tis.202004023]

备注/Memo

收稿日期:2016-07-25。
基金项目:国家自然科学基金面上项目(61375081).
作者简介:权美香,女,1992年生,博士,主要研究方向为单目视觉SLAM,VIN,移动机器人视觉导航;朴松昊,男,1972年生,教授,博士生导师,中国人工智能学会常务理事,机器人文化艺术专业委员会主任,主要研究方向为机器人环境感知与导航、机器人运动规划、多智能体机器人协作。主持或参加了国家自然科学基金、国家"863"计划重点及面上项目、机器人技术与系统国家重点实验室基金、教育部"985"项目、三星国际合作项目等多个项目。发表学术论文60余篇,其中被SCI、EI、ISTP检索60多篇,出版专著一部;李国,男,1989年生,博士,主要研究方向为SLAM、机器学习。
通讯作者:朴松昊.E-mail:piaosh@hit.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134