[1]胡明伟,王洪光,潘新安,等.一种协作型机器人运动性能分析与仿真[J].智能系统学报,2017,12(01):75-81.[doi:10.11992/tis.201604018]
 HU Mingwei,WANG Hongguang,PAN Xinan,et al.Analysis and simulation on kinematics performance of a collaborative robot[J].CAAI Transactions on Intelligent Systems,2017,12(01):75-81.[doi:10.11992/tis.201604018]
点击复制

一种协作型机器人运动性能分析与仿真(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年01期
页码:
75-81
栏目:
出版日期:
2017-02-25

文章信息/Info

Title:
Analysis and simulation on kinematics performance of a collaborative robot
作者:
胡明伟12 王洪光1 潘新安1 田勇12 常勇1
1. 中国科学院沈阳自动化研究所 机器人学国家重点实验室, 辽宁 沈阳 110016;
2. 中国科学院大学, 北京 100049
Author(s):
HU Mingwei12 WANG Hongguang1 PAN Xin’an1 TIAN Yong12 CHANG Yong1
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 110049, China
关键词:
LBR iiwa协作型机器人灵活性可操作性狭小空间轨迹规划
Keywords:
LBR iiwacollaborative Robotsflexibilitymanipulabilitynarrow workspacetrajectory planning
分类号:
TP241
DOI:
10.11992/tis.201604018
摘要:
随着制造模式的变革,协作型机器人在工业领域的应用日益广泛。本文介绍了协作型机器人的特性,并且以KUKA LBR iiwa机器人为例,进行运动性能分析,旨在为研发此类机器人提供设计理论依据。利用Denavit-Hartenberg法建立了该机器人运动学模型。基于蒙特卡洛法在MATLAB环境下对机器人灵活性和可操作性进行分析,并对其在狭小空间内作业进行轨迹规划,仿真结果表明LBR iiwa机器人具有良好的灵活性、可操作性及避障能力。
Abstract:
With the revolution of manufacturing mode, the application of collaborative robot in industry is becoming increasingly widespread. This paper introduces the characteristics of collaborative robot and analyzes the kinematics performance of KUKA LBR iiwa which is the typical representative of collaborative robots. The aim of this work is to provide design theory basis for developing this kind of robot. The robot kinematic model is established by Denavit-Hartenberg method. Based on Monte-Carlo method, the flexibility and manipulability of robot are analyzed in MATLAB environment. The trajectory of robot working in narrow workspace is planned, simulation results show that LBR iiwa has good flexibility, manipulability and obstacle avoidance ability.

参考文献/References:

[1] IFR Statistical Department. Global survey: human-robot teams capturing new sectors[EB/OL]. Germany: IFR, (2014-12-02)[2015-10-18]. http://www.ifr.org/news/ifr-press-release/global-survey-human-robot-teams-capturing-new-sectors-670/.
[2] HANSON K.Collaborative robots lend a helping hand[EB/OL].USA:CTE Publications,(2015-01-01)[2015-10-18]. https://www.ctemag.com/news-videos/articles/collaborative-robots-lend-helping-hand.
[3] OSTERGAARD E. Lightweight robot for everybody[J]. IEEE robotics & automation magazine, 2012, 19(4): 17-18.
[4] BARRETTE M B. Collaborative robot ebook[EB/OL]. Canada:Robotiq,(2015-04-09)[2015-10-18].http://robotiq.com/resource-c-enter/ebooks/.
[5] American National Standards Institute. ANSI/RIA R15.06-2012, Industrial robots and robot systems-safety requirements[S]. American: ANSI, 2012.
[6] PILZ T. Guide to industry acceptance with the new “ISO TS 15066-collaborative robots” standard[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015.
[7] MATTHIAS B. New safety standards for collaborative robots, ABB YuMi dual-arm robot[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015.
[8] TSAI Y C, SONI A H. Workspace synthesis of 3R, 4R, 5R and 6R robots[J]. Mechanism and machine theory, 1985, 20(6): 555-563.
[9] 周东辉. 冗余度机器人机构学研究[D]. 北京: 北京航空航天大学机器人研究所, 1994. ZHOU Donghui. On the mechanism study of redundant robots[D]. Beijing: Graduate School of Beihang University, 1994.
[10] 赵占芳. 机器人冗余特性和力控制研究[D]. 北京: 北京航天航空大学研究生院, 1991. ZHAO Zhanfang. Redundancy and force control of robot manipulators[D]. Beijing: Graduate School of Beihang University, 1991.
[11] 归彤, 原培章. 7自由度机器人的图谱问题[J]. 机器人, 1991, 13(4): 27-30. GUI Tong, YUAN Peizhang. An atlas of 7-DOF robot manipulators[J]. Robot, 1991, 13(4): 27-30.
[12] HUO Xijian, LIU Yiwei, JIANG Li, et al. Design and development of a 7-DOF humanoid arm[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics. Guangzhou, China, 2012: 277-282.
[13] SALISBURY J K, CRAIG J J. Articulated hands: force control and kinematic issues[J]. The international journal of robotics research, 1982, 1(1): 4-17.
[14] YOSHIKAWA T. Manipulability of robotic mechanisms[J]. The international journal of robotics research, 1985, 4(2): 3-9.
[15] 蔡蒂, 谢存禧, 张铁, 等. 基于蒙特卡洛法的喷涂机器人工作空间分析及仿真[J]. 机械设计与制造, 2009(3): 161-162. CAI Di, XIE Cunxi, ZHANG Tie, et al. Study on workspace analysis and simulation of 6-DOF painting robot based on Monte-Carlo method[J]. Machinery design & manufacture, 2009(3): 161-162.
[16] CORKE P. Robotics, vision and control: fundamental algorithms in MATLAB[M]. Berlin Heidelberg, Germany: Springer, 2011: 135-160.

备注/Memo

备注/Memo:
收稿日期:2016-4-14;改回日期:。
基金项目:国家自然科学基金项目(51405482);辽宁省自然科学基金计划项目(2013020054);中国科学院重点部署项目(KGZD-EW-608-1);辽宁省产业共性技术创新平台计划项目(2015106014).
作者简介:胡明伟,男,1990年生,博士研究生,主要研究方向为机械电子;王洪光,男,1965年,研究员,博士生导师,主要研究方向为机器人机构学、特种机器人和机电一体化技术等。发表学术论文170余篇,授权发明和实用新型专利40余项;潘新安,男,1982年,副研究员,博士,主要研究方向为机器人机构学等。发表学术论文10余篇,授权发明和实用新型专利6项。
通讯作者:王洪光.E-mail:hgwang@sia.cn.
更新日期/Last Update: 1900-01-01