[1]王晓初,包芳,王士同,等.基于最小最大概率机的迁移学习分类算法[J].智能系统学报编辑部,2016,11(1):84-92.[doi:10.11992/tis.201505024]
 WANG Xiaochu,BAO Fang,WANG Shitong,et al.Transfer learning classification algorithms based on minimax probability machine[J].CAAI Transactions on Intelligent Systems,2016,11(1):84-92.[doi:10.11992/tis.201505024]
点击复制

基于最小最大概率机的迁移学习分类算法(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年1期
页码:
84-92
栏目:
出版日期:
2016-02-25

文章信息/Info

Title:
Transfer learning classification algorithms based on minimax probability machine
作者:
王晓初12 包芳23 王士同1 许小龙1
1. 江南大学数字媒体学院, 江苏无锡 214122;
2. 江阴职业技术学院江苏省信息融合软件工程技术研发中心, 江苏江阴 214405;
3. 江阴职业技术学院计算机科学系, 江苏江阴 214405
Author(s):
WANG Xiaochu12 BAO Fang23 WANG Shitong1 XU Xiaolong1
1. School of Digital Media, Jiangnan University, Wuxi 214122, China;
2. Information Fusion Software Engineering Research and Development Center of Jiangsu Province, Jiangyin Pdyteehnie College, Jiangyin 214405, China;
3. Department of Computer Science, Jiangyin Pdyteehnie College, Jiangyin 214405, China
关键词:
迁移学习最小最大概率机分类源域目标域正则化
Keywords:
transfer learningminimax probability machineclassificationsource domaintarget domainregularization
分类号:
TP391.4
DOI:
10.11992/tis.201505024
摘要:
传统的迁移学习分类算法利用源域中大量有标签的数据和目标域中少量有标签的数据解决相关但不相同目标域的数据分类问题,但对于已知源域的不同类别数据均值的迁移学习分类问题并不适用。为了解决这个问题,利用源域的数据均值和目标域的少量标记数据构造迁移学习约束项,对最小最大概率机进行正则化约束,提出了基于最小最大概率机的迁移学习分类算法,简称TL-MPM。在20 News Groups数据集上的实验结果表明,目标域数据较少时,所提算法具有更高的分类正确率,从而说明了算法的有效性。
Abstract:
Traditional transfer learning classification algorithms solve related (but not identical) data classification issues by using a large number of labeled samples in the source domain and small amounts of labeled samples in the target domain. However, this technique does not apply to the transfer learning of data from different categories of learned source domain data. To solve this problem, we constructed a transfer learning constraint term using the source domain data and the limited labeled data in the target domain to generate a regularized constraint for the minimax probability machine. We propose a transfer learning classification algorithm based on the minimax probability machine known as TL-MPM. Experimental results on 20 Newsgroups data sets demonstrate that the proposed algorithm has higher classification accuracy for small amounts of target domain data. Therefore, we confirm the effectiveness of the proposed algorithm.

参考文献/References:

[1] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10):1345-1359.
[2] DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine learning. New York, NY, USA, 2007:193-200.
[3] PAN S J, KWOK J T, YANG Qiang. Transfer learning via dimensionality reduction[C]//Proceedings of the 23rd National Conference on Artificial Intelligence. AAAI, 2008, 2:677-682.
[4] 张景祥, 王士同, 邓赵红, 等. 具有协同约束的共生迁移学习算法研究[J]. 电子学报, 2014, 42(3):556-560. ZHENG Jingxiang, WANG Shitong, DENG Zhaohong, et al. Symbiosis transfer learning method with collaborative constraints[J]. Acta electronica sinica, 2014, 42(3):556-560.
[5] 于重重, 吴子珺, 谭励, 等. 非平衡集成迁移学习模型及其在桥梁结构健康监测中的应用[J]. 智能系统学报, 2013, 8(1):46-51. YU Chongchong, WU Zijun, TAN Li, et al. Unbalanced integrated transfer learning model and its application to bridge structural health monitoring[J]. CAAI transactions on intelligent systems, 2013, 8(1):46-51.
[6] 毕安琪, 王士同. 基于SVC和SVR约束组合的迁移学习分类算法[J]. 控制与决策, 2014, 29(6):1021-1026. BI Anqi, WANG Shitong. Transfer classification learning based on combination of both SVC and SVR’s constraints[J]. Control and decision, 2014, 29(6):1021-1026.
[7] 蒋亦樟, 邓赵红, 王士同. ML型迁移学习模糊系统[J]. 自动化学报, 2012, 38(9):1393-1409.JIANG Yizhang, DENG Zhaohong, WANG Shitong. Mamdani-larsen type transfer learning fuzzy system[J]. Acta automatica sinica, 2012, 38(9):1393-1409.
[8] LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Adaptation regularization:a general framework for transfer learning[J]. IEEE transactions on knowledge and data engineering, 2014, 26(5):1076-1089.
[9] LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer learning with graph co-regularization[J]. IEEE transactions on knowledge and data engineering, 2014, 26(7):1805-1818.
[10] PERLICH C, DALESSANDRO B, RAEDER T, et al. Machine learning for targeted display advertising:transfer learning in action[J]. Machine learning, 2014, 95(1):103-127.
[11] LANCKRIET G R G, EL GHAOUI L, BHATTACHARYYA C, et al. A robust minimax approach to classification[J]. The journal of machine learning research, 2003(3):555-582.
[12] ISII K. On the sharpness of Chebyshev-type inequalities[J]. Annals of the institute of statistical mathematics, 1963(14):185-197.
[13] BERTSIMAS D, SETHURAMAN J. Moment problems and semidefinite optimization[M]//WOLKOWICZ H, SAIGAL R, VANDENBERGHE L. Handbook of Semidefinite Programming. 3rd ed. US:Springer, 2000:469-509.
[14] CHERNOFF H. The selection of effective attributes for deciding between hypotheses using linear Discriminant functions[C]//The Proceedings of the International Conference on Frontiers of Pattern Recognition. New York, USA, 1972:55-60.
[15] 陈宝林. 最优化理论与算法[M]. 2版. 北京:清华大学出版社, 2005. CHEN Baolin. Optimization theory and algorithm[M]. 2nd ed. Beijing:Tsinghua University Press, 2005.
[16] PLAN Y, VERSHYNIN R. Robust 1-bit compressed sensing and sparse logistic regression:a convex programming approach[J]. IEEE transactions on information theory, 2012, 59(1):482-494.
[17] BENSOUSSAN A, TEMAM R. Equations aux derivees partielles stochastiques non iineaires[J]. Israel journal of mathematics,1972,11(1):95-129.
[18] BOYD S, VANDENBERGHE L, FAYBUSOVICH L. Convex optimization[J]. IEEE transactions on automatic control, 2006, 51(11):1859.

相似文献/References:

[1]王跃,杨燕,王红军.一种基于少量标签的改进迁移模糊聚类[J].智能系统学报编辑部,2016,11(3):310.[doi:10.11992/tis.201603046]
 WANG Yue,YANG Yan,WANG Hongjun.An improved transfer fuzzy clustering with few labels[J].CAAI Transactions on Intelligent Systems,2016,11(1):310.[doi:10.11992/tis.201603046]
[2]程旸,蒋亦樟,钱鹏江,等.知识迁移的极大熵聚类算法及其在纹理图像分割中的应用[J].智能系统学报编辑部,2017,12(02):179.[doi:10.11992/tis.201603005]
 CHENG Yang,JIANG Yizhang,QIAN Pengjiang,et al.A maximum entropy clustering algorithm based on knowledge transfer and its application to texture image segmentation[J].CAAI Transactions on Intelligent Systems,2017,12(1):179.[doi:10.11992/tis.201603005]
[3]许敏,史荧中,葛洪伟,等.一种具有迁移学习能力的RBF-NN算法及其应用[J].智能系统学报编辑部,2018,13(06):959.[doi:10.11992/tis.201705021]
 XU Min,SHI Yingzhong,GE Hongwei,et al.A RBF-NN algorithm with transfer learning ability and its application[J].CAAI Transactions on Intelligent Systems,2018,13(1):959.[doi:10.11992/tis.201705021]
[4]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报编辑部,2018,13(06):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13(1):967.[doi:10.11992/tis.201801025]
[5]凌彤,杨琬琪,杨明.利用多模态U形网络的CT图像前列腺分割[J].智能系统学报编辑部,2018,13(06):981.[doi:10.11992/tis.201806012]
 LING Tong,YANG Wanqi,YANG Ming.Prostate segmentation in CT images with multimodal U-net[J].CAAI Transactions on Intelligent Systems,2018,13(1):981.[doi:10.11992/tis.201806012]
[6]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报编辑部,2019,14(03):566.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14(1):566.[doi:10.11992/tis.201804056]
[7]洪雁飞,魏本征,刘川,等.基于深度学习的椎间孔狭窄自动多分级研究[J].智能系统学报编辑部,2019,14(04):708.[doi:10.11992/tis.201806015]
 HONG Yanfei,WEI Benzheng,LIU Chuan,et al.Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis[J].CAAI Transactions on Intelligent Systems,2019,14(1):708.[doi:10.11992/tis.201806015]
[8]鲁绪正,蔡恒进,林莉.基于Capsule网络的甲骨文构件识别方法[J].智能系统学报编辑部,2020,15(2):243.[doi:10.11992/tis.201904069]
 LU Xuzheng,CAI Hengjin,LIN Li.Recognition of Oracle Radical based on the Capsule network[J].CAAI Transactions on Intelligent Systems,2020,15(1):243.[doi:10.11992/tis.201904069]
[9]商显震,韩萌,王少峰,等.融合迁移学习和神经网络的皮肤病诊断方法[J].智能系统学报编辑部,2020,15(3):452.[doi:10.11992/tis.201811015]
 SHANG Xianzhen,HAN Meng,WANG Shaofeng,et al.A skin diseases diagnosis method combining transfer learning and neural networks[J].CAAI Transactions on Intelligent Systems,2020,15(1):452.[doi:10.11992/tis.201811015]
[10]马岭,鲁越,蒋慧琴,等.基于小样本学习的LCD产品缺陷自动检测方法[J].智能系统学报编辑部,2020,15(3):560.[doi:10.11992/tis.201904020]
 MA Ling,LU Yue,JIANG Huiqin,et al.An automatic small sample learning-based detection method for LCD product defects[J].CAAI Transactions on Intelligent Systems,2020,15(1):560.[doi:10.11992/tis.201904020]

备注/Memo

备注/Memo:
收稿日期:2015-05-11;改回日期:。
基金项目:国家自然科学基金资助项目(61170122,61272210).
作者简介:王晓初,男,1987年生,硕士研究生,主要研究方向为人工智能与模式识别、数字图像处理;包芳,女,1970年生,教授,博士,主要研究方向为人工智能、模式识别、图像视觉;王士同,男,1964年生,教授、博士生导师,主要研究方向为人工智能。主持或参加过6项国家自然科学基金项目,1项国家教委优秀青年教师基金项目,其他省部级科研项目10多项。先后获国家教委、中船总公司和江苏省省部级科技进步奖5项。发表学术论文近百篇,被SCI、EI检索50余篇。
通讯作者:王晓初.E-mail:icnice@yeah.net.
更新日期/Last Update: 1900-01-01