[1]刘欢,王骏,邓赵红,等.堆叠隐空间模糊C回归算法及其在发酵数据多模型建模中的应用[J].智能系统学报,2016,11(5):670-679.[doi:10.11992/tis.201508015]
 LIU Huan,WANG Jun,DENG Zhaohong,et al.A cascaded hidden space fuzzy C-regression algorithmand its application in multi-model modeling for thefermentation process[J].CAAI Transactions on Intelligent Systems,2016,11(5):670-679.[doi:10.11992/tis.201508015]
点击复制

堆叠隐空间模糊C回归算法及其在发酵数据多模型建模中的应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年5期
页码:
670-679
栏目:
出版日期:
2016-11-01

文章信息/Info

Title:
A cascaded hidden space fuzzy C-regression algorithmand its application in multi-model modeling for thefermentation process
作者:
刘欢 王骏 邓赵红 王士同
江南大学 数字媒体学院, 江苏 无锡 214122
Author(s):
LIU Huan WANG Jun DENG Zhaohong WANG Shitong
School of Digital Media, JiangNan University, WuXi 214122, China
关键词:
隐空间映射极限学习机主成分分析模糊C回归算法多层神经网络多模型建模
Keywords:
hidden space feature mappingextreme learning machineprincipal component analysisfuzzy C-regression algorithmmultilayer neural networkmulti-model modeling.
分类号:
TP181
DOI:
10.11992/tis.201508015
摘要:
切换回归算法FCR的性能容易受到噪声点以及离群点的影响,同时该算法对于复杂数据的处理能力较差。对此,文中提出一种基于堆叠隐空间的模糊C回归算法。该算法将基于ELM特征映射技术,利用主成分分析进行特征提取,再结合多层前馈神经网络学习结构对隐空间进行多次扩展和压缩。实验结果表明,该算法具有更好的抗噪性能,对模糊指数的变化不敏感,同时在处理复杂数据以及在多模型建模中更加精确、高效、稳定。
Abstract:
The switching regression algorithm FCR is sensitive to noise data and outliers. The algorithm also has low levels of capability for dealing with complex data. In order to handle these problems, an improved fuzzy C-regression algorithm is proposed based on cascaded hidden space. In our method, principal component analysis is combined with extreme machine learning feature mapping and multilayer feedforward neural networks. The experimental results show that our proposed method is more stable as regards noise data and outliers, and thus more suitable for handling complex data and multi-model modeling problems for the fermentation process.

参考文献/References:

[1] 王骏, 王士同, 邓赵红. 聚类分析研究中的若干问题[J]. 控制与决策, 2012, 27(3):321-328. WANG Jun, WANG Shitong, DENG Zhaohong. Survey on challenges in clustering analysis research[J]. Control and decision, 2012, 27(3):321-328.
[2] 蒋亦樟, 邓赵红, 王骏, 等. 熵加权多视角协同划分模糊聚类算法[J]. 软件学报, 2014, 25(10):2293-2311. JIANG Yizhang, DENG Zhaohong, WANG Jun, et al. Collaborative partition multi-view fuzzy clustering algorithm using entropy weighting[J]. Journal of software, 2014, 25(10):2293-2311.
[3] 张敏, 于剑. 基于划分的模糊聚类算法[J]. 软件学报, 2004, 15(6):858-868. ZHANG Min, YU Jian. Fuzzy partitional clustering algorithms[J]. Journal of software, 2004, 15(6):858-868.
[4] 秦蓓蓓. 基于聚类分析的鲁棒自适应切换回归算法研究[D]. 上海:上海交通大学, 2012:14-39. QIN Beibei. Research on the robust and adaptive switching C-regressions models based on cluster analysis[D]. Shanghai:Shanghai Jiao Tong University, 2012:14-39.
[5] HATHAWAY R J, BEZDEK J C. Switching regression models and fuzzy clustering[J]. IEEE transactions on fuzzy systems, 1993, 1(3):195-204.
[6] WANG Shitong, JIANG Haifeng, LU Hongjun. A new integrated clustering algorithm GFC and switching regressions[J]. International journal of pattern recognition and artificial intelligence, 2002, 16(4):433-446.
[7] 沈红斌, 王士同, 吴小俊. 离群模糊切换回归模型研究[J]. 华东船舶工业学院学报:自然科学版, 2003, 17(3):31-36. SHEN Hongbin, WANG Shitong, WU Xiaojun. Research on fuzzy switching regression models with outliers[J]. Journal of east China shipbuilding institute:natural science edition, 2003, 17(3):31-36.
[8] WANG Shitong, CHUNG Fulai, WANG Jun, et al. A fast learning method for feedforward neural networks[J]. Neurocomputing, 2015, 149:295-307.
[9] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
[10] HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems, man, and cybernetics, part b (cybernetics), 2012, 42(2):513-529.
[11] HUANG Guangbin, WANG Dianhui, LAN Yuan. Extreme learning machines:a survey[J]. International journal of machine learning and cybernetics, 2011, 2(2):107-122.
[12] JOLLIFFE I T. Principal component analysis[J]. New York:Springer, 2002.
[13] ZHOU Hongming, HUANG Guangbin, LIN Zhiping, et al. Stacked extreme learning machines[J]. IEEE transactions on cybernetics, 2014, 45(9):2013-2025.
[14] HE Qing, JIN Xin, DU Changying, et al. Clustering in extreme learning machine feature space[J]. Neurocomputing, 2014, 128:88-95.
[15] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press, 1981:203-239.
[16] HUANG Guangbin, CHEN Lei. Convex incremental extreme learning machine[J]. Neurocomputing, 2007, 70(16/17/18):3056-3062.
[17] HUANG Guangbin, CHEN Lei. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(16/17/18):3460-3468.
[18] DENG Zhaohong, CHOI K S, CHUNG Fulai, et al. Enhanced soft subspace clustering integrating within-cluster and between-cluster information[J]. Pattern recognition, 2010, 43(3):767-781..

相似文献/References:

[1]周后飞,刘华平,石红星.智能手机车辆异常驾驶行为检测方法[J].智能系统学报,2016,11(3):410.[doi:10.11992/tis.201504022]
 ZHOU Houfei,LIU Huaping,SHI Hongxing.Abnormal driving behavior detection based on the smart phone[J].CAAI Transactions on Intelligent Systems,2016,11(5):410.[doi:10.11992/tis.201504022]
[2]傅蔚阳,刘以安,薛松.基于改进KH算法优化ELM的目标威胁估计[J].智能系统学报,2018,13(05):693.[doi:10.11992/tis.201704007]
 FU Weiyang,LIU Yian,XUE Song.Target threat assessment using improved Krill Herd optimization and extreme learning machine[J].CAAI Transactions on Intelligent Systems,2018,13(5):693.[doi:10.11992/tis.201704007]
[3]魏佳琪,刘华平,王博文,等.触觉手势情感识别的超限学习方法[J].智能系统学报,2019,14(01):127.[doi:10.11992/tis.201804029]
 WEI Jiaqi,LIU Huaping,WANG Bowen,et al.Extreme learning machine for emotion recognition of tactile gestures[J].CAAI Transactions on Intelligent Systems,2019,14(5):127.[doi:10.11992/tis.201804029]
[4]左鹏玉,周洁,王士同.面对类别不平衡的增量在线序列极限学习机[J].智能系统学报,2020,15(3):520.[doi:10.11992/tis.201904040]
 ZUO Pengyu,ZHOU Jie,WANG Shitong.Incremental online sequential extreme learning machine for imbalanced data[J].CAAI Transactions on Intelligent Systems,2020,15(5):520.[doi:10.11992/tis.201904040]

备注/Memo

备注/Memo:
收稿日期:2015-08-14。
基金项目:国家自然科学基金项目(61300151);江苏省自然科学基金项目(BK20130155,BK20130160).
作者简介:刘欢,男,1993年生,硕士研究生,主要研究方向为人工智能与模式识别、智能计算、数据挖掘;王骏,男,1978年生,副教授,博士,CCF会员,主要研究方向为人工智能与模式识别、智能计算、数据挖掘;邓赵红,男,1981年生,教授,博士,CCF高级会员,主要研究方向为人工智能与模式识别、智能计算、系统建模。
通讯作者:刘欢.E-mail:771627297@qq.com
更新日期/Last Update: 1900-01-01