[1]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报编辑部,2015,10(6):912-920.[doi:10.11992/tis.201509025]
 SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10(6):912-920.[doi:10.11992/tis.201509025]
点击复制

一种特征加权融合人脸识别方法(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年6期
页码:
912-920
栏目:
出版日期:
2015-12-25

文章信息/Info

Title:
Face recognition by weighted fusion of facial features
作者:
孙劲光12 孟凡宇2
1. 辽宁工程技术大学电子与信息工程学院, 辽宁葫芦岛 125000;
2. 辽宁省数字化矿山装备工程技术研究中心, 辽宁阜新 123000
Author(s):
SUN Jinguang12 MENG Fanyu2
1. School of Electronics and Information Engineering, Liaoniing Technical University, Huludao 125000, China;
2. LiaoNing Digital Mining Equipment Engineering Technology Research Center, Fuxin 123000, China
关键词:
人脸识别非限制条件深度自信网络局部特征特征融合全局特征
Keywords:
face recognitionunconstrained conditiondeep belief networkslocal featurefeature fusionoverall feature
分类号:
TN911.73
DOI:
10.11992/tis.201509025
摘要:
针对传统人脸识别算法在非限制条件下识别准确率不高的问题,提出了一种特征加权融合人脸识别方法(DLWF+)。根据人脸面部左眼、右眼、鼻子、嘴、下巴等5个器官位置,将人脸图像划分成5个局部采样区域;将得到的5个局部采样区域和整幅人脸图像分别输入到对应的神经网络中进行网络权值调整,完成子网络的构建;利用softmax回归求出6个相似度向量并组成相似度矩阵与权向量相乘得出最终的识别结果。经ORL和WFL人脸库上进行实验验证,识别准确率分别达到97%和91.63%。实验结果表明:该算法能够有效提高人脸识别能力,与传统识别算法相比在限制条件和非限制条件下都具有较高的识别准确率。
Abstract:
The accuracy of face recognition is low under unconstrained conditions. To solve this problem, we propose a new method based on deep learning and the weighted fusion of facial features. First, we divide facial feature points into five regions using an active shape model and then sample different facial components corresponding to those facial feature points. A corresponding deep belief network(DBN) was then trained based on these regional samples to obtain optimal network parameters. The five regional sampling regions and entire facial image obtained were then inputted into a corresponding neural network to adjust the network weight and complete the construction of sub-networks. Finally, using softmax regression, we obtained six similarity vectors of different components. These six similarity vectors comprise a similarity matrix, which is then multiplied by the weight vector to derive the final recognition result. Recognition accuracy was 97% and 91.63% on the ORL and WFL face databases, respectively. Compared with traditional recognition algorithms such as SVM, DBN, PCA, and FIP+LDA, recognition rates for both databases were improved in both constrained and unconstrained conditions. On the basis of these experimental results, we conclude that the proposed algorithm demonstrates high efficiency in face recognition.

参考文献/References:

[1] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1):71-86.
[2] SUN Yi, WANG Xiaogang, TANG Xiaoou. Deep learning face representation from predicting 10, 000 classes[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:1891-1898.
[3] HU Junlin, LU Jiwen, TAN Y P. Discriminative deep metric learning for face verification in the wild[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:1875-1882.
[4] HUANG G B, LEE H, LEARNED-MILLER E. Learning hierarchical representations for face verification with convolutional deep belief networks[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2012:2518-2525.
[5] ZHU Zhenyao, LUO Ping, WANG Xiaogang, et al. Deep learning identity-preserving face space[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013:113-120.
[6] SUN Yi, WANG Xiaogang, TANG Xiaoou. Hybrid deep learning for face verification[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013:1489-1496.
[7] TAIGMAN Y, YANG Ming, RANZATO M A, et al. Deepface:Closing the gap to human-level performance in face verification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014:1701-1708.
[8] SUN Yi, CHEN Yuheng, WANG Xiaogang, et al. Deep learning face representation by joint identification-verification[J]. Advances in Neural Information Processing Systems. 2014.
[9] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[10] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[11] AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning a new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4):13-18.
[12] COOTES T F, TAYLOR C J, COOPER D H, et al. Active shape models-their training and application[J]. Computer Vision and Image Understanding, 1995, 61(1):38-59.
[13] MILBORROW S, NICOLLS F. Active shape models with SIFT descriptors and MARS[J]. VISAPP, 2014, 1(2):5.
[14] MILBORROW S, BISHOP T E, NICOLLS F. Multiview active shape models with SIFT descriptors for the 300-W face landmark challenge[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops. Sydney, NSW, Australia, 2013:378-385.
[15] Bengio Y, Delalleau O. On the expressive power of deep architectures[C]//Proceedings of the 22nd International Conference. Espoo, Finland, 2011:18-36.
[16] HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8):1771-1800.
[17] BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1):1-127.

相似文献/References:

[1]金一,阮秋琦.一种局部加权的二维主成分分析算法及其在人脸识别中的应用[J].智能系统学报编辑部,2007,2(03):25.
 JIN Yi,RUAN Qiu-qi.A partially weighted twodimensional PCA for face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(6):25.
[2]任小龙,苏光大,相 燕.使用第2代身份证的人脸识别身份认证系统[J].智能系统学报编辑部,2009,4(03):213.
 REN Xiao-long,SU Guang-da,XIANG Yan.Face authentication system using the Chinese second generation identity card[J].CAAI Transactions on Intelligent Systems,2009,4(6):213.
[3]苏光大.多技术合力的人脸识别系统设计[J].智能系统学报编辑部,2009,4(06):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
 SU Guang-da.Face recognition system designed to integrate multiple techniques[J].CAAI Transactions on Intelligent Systems,2009,4(6):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
[4]王科俊,邹国锋,张洁.SPCA参数对单样本人脸识别效果影响分析[J].智能系统学报编辑部,2011,6(06):531.
 WANG Kejun,ZOU Guofeng,ZHANG Jie.Analysis of the influence of SPCA parameters on the recognition of a single sample face[J].CAAI Transactions on Intelligent Systems,2011,6(6):531.
[5]杜吉祥,翟传敏,叶永青.使用稀疏约束非负矩阵分解算法的跨年龄人脸识别[J].智能系统学报编辑部,2012,7(03):271.
 DU Jixiang,ZHAI Chuanmin,YE Yongqing.An agespan face recognition method based on an NMF algorithm with sparseness constraints[J].CAAI Transactions on Intelligent Systems,2012,7(6):271.
[6]阮晓虎,李卫军,覃鸿,等.一种基于特征匹配的人脸配准判断方法[J].智能系统学报编辑部,2015,10(01):12.[doi:10.3969/j.issn.1673-4785.201312064]
 RUAN Xiaohu,LI Weijun,QIN Hong,et al.An assessment method for face alignment based on feature matching[J].CAAI Transactions on Intelligent Systems,2015,10(6):12.[doi:10.3969/j.issn.1673-4785.201312064]
[7]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报编辑部,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11(6):279.[doi:10.11992/tis.201603026]
[8]刘训利,龚勋,王国胤.一种基于非残差估计线性表示模型的人脸识别[J].智能系统学报编辑部,2014,9(03):285.[doi:10.3969/j.issn.1673-4785.201309065]
 LIU Xunli,GONG Xun,WANG Guoyin.Face recognition based on the linear representation model without residual estimation[J].CAAI Transactions on Intelligent Systems,2014,9(6):285.[doi:10.3969/j.issn.1673-4785.201309065]
[9]夏洋洋,龚勋,洪西进.人脸识别背后的数据清理问题研究[J].智能系统学报编辑部,2017,12(05):616.[doi:10.11992/tis.201706025]
 XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12(6):616.[doi:10.11992/tis.201706025]
[10]余拓,陈莹.基于加权边缘弱化引导滤波的人脸光照补偿[J].智能系统学报编辑部,2018,13(03):373.[doi:10.11992/tis.201612011]
 YU Tuo,CHEN Ying.Face illumination compensation based on weighted edge-weakening guided image filter[J].CAAI Transactions on Intelligent Systems,2018,13(6):373.[doi:10.11992/tis.201612011]

备注/Memo

备注/Memo:
收稿日期:2015-09-17;改回日期:。
基金项目:国家科技支撑计划资助项目(2013BAH12F02).
作者简介:孙劲光,女,1962年生,博士,教授,博士生导师,计算机学会(CCF)会员(21314S),主要研究方向为计算机图像处理、计算机图形学、知识工程。孟凡宇,男,1991年生,硕士研究生,主要研究方向为计算机图像处理。
通讯作者:孟凡宇.E-mail:mengfanyu1991@163.com.
更新日期/Last Update: 1900-01-01