参考文献/References:
[1] HAIMIA H, MULAS M, CORONA F, et al. Data-derived soft-sensors for biological wastewater treatment plants:an overview[J]. Environmental Modelling and Software, 2013, 47:88-107.
[2] ZHANG Ping, YUAN Mingzhe, WANG Hong. Improvement of nitrogen removal and reduction of operating costs in an activated sludge process with feedforward-cascade control strategy[J]. Biochemical Engineering Journal, 2008, 41(1):53-58.
[3] OSTACE G S, CRISTEA V M, AGACHI P S. Cost reduction of the wastewater treatment plant operation by MPC based on modified ASM1 with two-step nitrification/denitrification model[J]. Computers and Chemical Engineering, 2011, 35(11):2469-2479.
[4] PIOTROWSKI R, BRDYS M A, KONARCZAK K, et al. Hierarchical dissolved oxygen control for activated sludge processes[J]. Control Engineering Practice, 2008, 16(1):114-131.
[5] BRDYS M A, GROCHOWSKI M, GMINSKI T, et al. Hierarchical predictive control of integrated wastewater treatment systems[J]. Control Engineering Practice, 2008, 16(6):751-767.
[6] HOLENDA B, DOMOKOS E, RÉDEY Á, et al. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control[J]. Computers and Chemical Engineering, 2008, 32(6):1270-1278.
[7] 薄迎春, 乔俊飞. 启发式动态规划在污水处理过程控制中的应用[J]. 控制理论与应用, 2013, 30(7):828-833. BO Yingchun, QIAO Junfei. Application of heuristic dynamic programming to wastewater treatment process control[J]. Control Theory and Applications, 2013, 30(7):828-833.
[8] 丛秋梅, 柴天佑, 余文, 等. 污水处理过程的递阶神经网络建模[J]. 控制理论与应用, 2009, 26(1):8-14. CONG Qiumei, CHAI Tianyou, YU Wen, et al. Modeling wastewater treatment plant via hierarchical neural networks[J]. Control Theory and Applications, 2009, 26(1):8-14.
[9] JOUANNEAU S, RECOULES L, DURAND M J, et al. Methods for assessing biochemical oxygen demand(BOD):a review[J]. Water Research, 2014, 49:62-82.
[10] IQBAL J, GURIA C. Optimization of an operating domestic wastewater treatment plant using elitist non-dominated sorting genetic algorithm[J]. Chemical Engineering Research and Design, 2009, 87(11):1481-1496.
[11] 史雄伟, 乔俊飞, 苑明哲. 基于改进粒子群优化算法的污水处理过程优化控制[J]. 信息与控制, 2011, 40(5):698-703. SHI Xiongwei, QIAO Junfei, YUAN Mingzhe. Optimal control for wastewater treatment process based on improved particle swarm optimization algorithm[J]. Information and Control, 2011, 40(5):698-703.
[12] VRABIE D, LEWIS F. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems[J]. Neural Networks, 2009, 22(3):237-246.
[13] COPP J B. The COST simulation benchmark:description and simulator manual[R]. Luxembourg:Office for Publications of the European Community, 2001.
[14] QIAO Junfei, BO Yingchun, CHAI Wei, et al. Adaptive optimal control for a wastewater treatment plant based on a data-driven method[J]. Water Science and Technology, 2013, 67(10):2314-2320.
[15] CHACHUAT B, ROCHE N, LATIFI M. Long-term optimal aeration strategies for small-size alternating activated sludge treatment plants[J]. Chemical Engineering and Processing:Process Intensification, 2005, 44(5):591-604.
相似文献/References:
[1]吴军,徐昕,连传强,等.协作多机器人系统研究进展综述[J].智能系统学报编辑部,2011,6(01):13.
WU Jun,XU Xin,LIAN Chuanqiang,et al.A survey of recent advances in cooperative multirobot systems[J].CAAI Transactions on Intelligent Systems,2011,6(6):13.
[2]乔俊飞,逄泽芳,韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制[J].智能系统学报编辑部,2012,7(05):429.
QIAO Junfei,PANG Zefang,HAN Honggui.Neural network optimal control for wastewater treatment processbased on APSO[J].CAAI Transactions on Intelligent Systems,2012,7(6):429.
[3]拓守恒,邓方安,雍龙泉.改进教与学优化算法的LQR控制器优化设计[J].智能系统学报编辑部,2014,9(05):602.[doi:10.3969/j.issn.1673-4785.201304071]
TUO Shouheng,DENG Fangan,YONG Longquan.Optimal design of a linear quadratic regulator (LQR) controller based on the modified teaching-learning-based optimization algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(6):602.[doi:10.3969/j.issn.1673-4785.201304071]
[4]鲍毅,楼凤丹,王万良.需求侧管理下智能家庭用电多目标优化控制[J].智能系统学报编辑部,2018,13(01):125.[doi:10.11992/tis.201705030]
BAO Yi,LOU Fengdan,WANG Wanliang.Multiobjective optimization control of intelligent household electricity with demand management[J].CAAI Transactions on Intelligent Systems,2018,13(6):125.[doi:10.11992/tis.201705030]