[1]拓守恒,邓方安,雍龙泉.改进教与学优化算法的LQR控制器优化设计[J].智能系统学报,2014,9(05):602-607.[doi:10.3969/j.issn.1673-4785.201304071]
 TUO Shouheng,DENG Fangan,YONG Longquan.Optimal design of a linear quadratic regulator (LQR) controller based on the modified teaching-learning-based optimization algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(05):602-607.[doi:10.3969/j.issn.1673-4785.201304071]
点击复制

改进教与学优化算法的LQR控制器优化设计(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年05期
页码:
602-607
栏目:
出版日期:
2014-10-25

文章信息/Info

Title:
Optimal design of a linear quadratic regulator (LQR) controller based on the modified teaching-learning-based optimization algorithm
作者:
拓守恒 邓方安 雍龙泉
陕西理工学院 数学与计算机科学学院, 陕西 西安 723000
Author(s):
TUO Shouheng DENG Fang’an YONG Longquan
School of Mathematics and Computer Science, Shaanxi University of Technology, XI’an 723000, China
关键词:
教与学优化算法LQR控制器优化控制主动悬架粒子群优化算法遗传算法
Keywords:
teaching-learning-based optimization algorithmLQR controlleroptimal controlactive suspensionparticle swarm optimizationgenetic algorithm
分类号:
TP18
DOI:
10.3969/j.issn.1673-4785.201304071
摘要:
为了快速有效地确定线性二次最优控制(linear quadratic regulator, LQR)问题中的加权矩阵QR,针对主动悬架LQR控制器权系数设计问题,提出一种改进的教与学优化算法进行LQR优化设计。算法对基本教与学优化算法中的"教"与"学"阶段进行了进一步的改进,同时提出一种"自我学习"策略。通过仿真实验表明,和基本教与学算法、粒子群算法、遗传算法相比,本文算法在对主动悬架LQR控制器优化时,具有收敛速度快,求解精度高和稳定性强等优势。
Abstract:
To determine the weighting matrix Q and R for a linear quadratic regulator (LQR), a modified teaching-learning-based optimization (MTLBO) algorithm is proposed to tune weighting factors for active suspension LQR controller. The "Teaching" phase and "learning" phase are modified using MTLBO based on the basic TLBO algorithm. A novel "self-learning" strategy is employed in MTLBO. The simulation results showed that the MTLBO algorithm has distinct advantages in convergence, precision and stability than basic TLBO, PSO and genetic algorithms.

参考文献/References:

[1] RAO P, CROW M L, YANG Z. STATCOM control for power system voltage control applications[J]. IEEE Trans Power Electron, 2000, 15(4):1315-1317.
[2] KALMAN R E. When is a linear control system optimal[J]. J Basci Eng Trans, 1964, 86(1):51-56.
[3] WANG Yaoqing. The determination of weighting matrices in LQ optimal control system [J]. Acta Automatic Sinica, 1992.
[4] SUNG Ghengchung, CHEN Gong. Optimal control systems design associated with genetic algorithm[C]//Proceedings of 2006 CACS Automatic Control Conference St. Taiwan, China, 2006:10-11.
[5] BOTTURA C P. Rule based decision making unit for Eigen structure assignment via parallel genetic algorithm and LQR design[C]//Proceedings of the American Control Conference. Chicago, Illinois, 2000:467-471.
[6] BOTTURA C P. Parallel eigen structure assignment via LQR design and genetic algorithms[C]//Proceedings of the American Control Conference. San Diego, 1999:2295-2299.
[7] HASSANZADEH I, MOBAYEN S, HARIFI A. Input-output feedback linearization cascade controller using genetic algorithm for rotary inverted pendulum[J]. American Journal of Applied Sciences, 2008, 5 (10):1322-1328.
[8] HAMIDI J. Control system design using particle swarm optimization[J]. International Journal of Soft Computing and Engineering, 2012, 1(6):2231-2307.
[9] 刘璐, 任开春, 武明亮. 基于网格划分策略的自适应ACO 算法优化LQR 控制器权值[J]. 西 南 科 技 大 学 学 报, 2012, 25(3):82-88. LIU Lu, REN Kaichun, WU Mingliang. LQR Controller weight matrices optimized by adaptive ant colony algorithms based on meshing strategy[J]. Journal of Southwest University of Science and Technology, 2012, 25(3):82-88.
[10] 史峰, 王辉. MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社, 2011:255-300.
[11] 郭一峰, 徐赵东, 涂青, 等. 基于遗传算法的LQR算法中权矩阵的优化分析[J].振动与冲击, 2010, 29(11):217-221.GUO Yifeng, XU Zhaodong, TU Qing, et al. Optimized analysis of weight matrix in LQR algorithm based on genetic algorithm[J]. Journal of Vibration and Shock, 2010, 29(11):217-221.
[12] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization:anovel method for constrained mechanical design optimization problems [J]. Computer-Aided Design, 2011:303-315.
[13] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization:an optimization method for continuous non-linear large scale problems [J]. Information Sciences, 2012:1-15.
[14] 拓守恒, 雍龙泉, 邓方安. "教与学"优化算法研究综述[J]. 计算机应用研究, 2013(7):1933-1938.TUO Shouheng, YONG Longquan, DENG Fang’an. Survey of teaching-learning-based optimization algorithms [J]. Application Research of Computers, 2013(7):1933-1938.
[15] 何红, 拓守恒. 教与学优化算法在梯级水库优化调度中的应用[J]. 计算机与数字工程, 2013(7):1057-1059.HE Hong, TUO Shouheng. Application of teaching-learning-based optimization in optimal dispatching of cascade reservoirs[J]. Computer & Digital Engineering, 2013, 7:1057-1059.
[16] 拓守恒. 一种优化神经网络的教与学优化算法[J]. 智能系统学报, 2013, 8(4):327-332.TUO Shouheng. A modified teaching-learning-based optimization algorithm and application in neural networks [J]. CAAI Transactions on intelligent systems, 2013, 8(4):327-332.
[17] 拓守恒. 改进的教与学优化算法[C]//第32届中国控制会议论文集(E卷).西安, 中国, 2013:7976-7981.TUO Shouheng. Modified teaching-learning-based optimization algorithm[C]//2013 32nd Chinese Control Conference, Xi’an, China, 2013:7976-7981.
[18] 拓守恒. 利用教与学优化策略改进的和声搜索算法[C]//第32届中国控制会议论文集(E卷).西安, 中国, 2013:6-10.TUO Shouheng. An improved harmony search algorithm based on teaching-learning strategy[C]. 2013 32nd Chinese Control Conference, 2013:6-10.
[19] EK M C, LIU S H, MERNIK L. A note on teaching-learning-based optimization algorithm[J]. Information Sciences, 2012:79-93.
[20] RAO R V, PATEL V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2012(3):535-560.
[21] 胡 斐, 赵治国. 主动悬架LQR 控制加权系数多目标遗传算法优化[J]. 机械与电子, 2011(2):28-31.HU Fei, ZHAO Zhiguo. Optimization of weighting factors for LQR controller of active suspension based on multi-objective genetic algorithm [J]. Machinery & Electronics, 2011(2):28-31.

相似文献/References:

[1]彭勇,陈俞强.改进蛙跳算法的LQR控制器的优化设计[J].智能系统学报,2014,9(04):480.[doi:10.3969/j.issn.1673-4785.201305055]
 PENG Yong,CHEN Yuqiang.Optimal design of the LQR controller based on the improved shuffled frog-leaping algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(05):480.[doi:10.3969/j.issn.1673-4785.201305055]

备注/Memo

备注/Memo:
收稿日期:2013-04-24。
基金项目:国家自然科学基金资助项目(11401357);陕西省教育厅基金资助项目(14JK1141);汉中市科技局基金资助项目(2013hzzx-39).
通讯作者:拓守恒, 男, 1978年生, 副教授, CCF会员, 主要研究方向为智能优化算法和生物信息学。E-mail:tuo_sh@126.com.
更新日期/Last Update: 1900-01-01