[1]阮晓虎,李卫军,覃鸿,等.一种基于特征匹配的人脸配准判断方法[J].智能系统学报,2015,10(01):12-19.[doi:10.3969/j.issn.1673-4785.201312064]
 RUAN Xiaohu,LI Weijun,QIN Hong,et al.An assessment method for face alignment based on feature matching[J].CAAI Transactions on Intelligent Systems,2015,10(01):12-19.[doi:10.3969/j.issn.1673-4785.201312064]
点击复制

一种基于特征匹配的人脸配准判断方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年01期
页码:
12-19
栏目:
出版日期:
2015-03-25

文章信息/Info

Title:
An assessment method for face alignment based on feature matching
作者:
阮晓虎 李卫军 覃鸿 董肖莉 张丽萍
中国科学院半导体研究所 高速电路与神经网络实验室, 北京 100083
Author(s):
RUAN Xiaohu LI Weijun QIN Hong DONG Xiaoli ZHANG Liping
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
关键词:
人脸识别图像规格化配准判断图像特征SIFT描述子梯度方向直方图关键点定位图像匹配
Keywords:
face recognitionimage normalizationalignment assessmentimage featureSIFT descriptorgradient orientation histogramkey point locationimage matching
分类号:
TP183
DOI:
10.3969/j.issn.1673-4785.201312064
文献标志码:
A
摘要:
现有的人脸识别应用系统大都忽略了人脸配准的检查,造成“误配准灾难”,导致识别性能下降。因此,对规格化后的人脸图像进行判断筛选,以保证只有正确配准的人脸图像才能用于后续识别。选用一定数量正确配准的规格化人脸图像平均值作为标准人脸,用SIFT关键点定位方法得到标准人脸的多个关键点,采用分块的梯度方向直方图统计方法提取关键点的邻域图像特征;然后,将标准人脸的关键点位置作为待检测人脸的定位点,用同样的方法提取定位点的邻域图像特征;计算待检图像与标准人脸图像对应关键点的特征矢量相似度,设定合理阈值判断待检测图像是否配准。实验证明,该方法能有效去除误配准人脸图像,有利于提高人脸识别系统的可靠性。
Abstract:
The lacking of confirmation for face alignment leads to an incorrect feature match. The decline of recognition rate in current application of face recognition is called "mis-alignment crash". Therefore, it is necessary to test and filter the normalized face images to make sure only the aligned face images can go through the recognition procedure. In the method, a bunch of right-alignment normalized face images were used to form a mean face which was defined as the standard face. The key points location theory of SIFT was used to get the key points of standard face and the features of neighboring images were extracted on the basis of blocked statistical histogram in gradient orientation. The location of key points of a standard face was taken as the positioning point of a face to be detected. Using the same method to extract the features of neighboring images showed that the similarities of the test images to the standard face were calculated according to their corresponding feature descriptors of the key points. A reasonable threshold was chosen to estimate and classify the images according to their similarities to standard face. The experiment proved that this method is effective in eliminating mis-aligned face image effectively and is beneficial for increasing the reliability of a face recognition system.

参考文献/References:

[1] 山世光,高文,唱轶钲,等. 人脸识别中的“误配准灾难”问题研究[J]. 计算机学报, 2005, 28(5): 782-791.SHAN Shiguang, GAO Wen, CHANG Yizheng, et al. "Curse of mis-alignment" problem in face recognition[J]. Chinese Journal of Computers, 2005, 28 (5): 782-791.
[2] 唱轶钲,山世光,高文,等. Gabor 特征判别分析人脸识别方法的误配准鲁棒性分析[J]. 计算机工程与运用,2005(5):56-59.CHANG Yizheng, SHAN Shiguang, GAO Wen, et al. Evaluation of gabor features for face recognition from the angle of robustness to mis-alignment[J]. Computer Engineering and Applications, 2005 (5):56-59.
[3] JUNG C, SUN Tian, JIAO Licheng, et al. Eye detection under varying illumination using the retinex theory[J]. Elsevier Science, 2013, 113: 130-137.
[4] GU Jiayu, LIU Chengjun. Feature local binary patterns with application to eye detection[J]. Neurocomputing, 2013, 113: 138-152.
[5] WANG Shangfei, LIU Zhilei, SHEN Peijia, et al. Eye localization from thermal infrared images[J]. Pattern Recognition, 2013, 46:2613-2621.
[6] 翟倩茹. 不同姿态人脸配准方法研究[D]. 大连:大连海事大学, 2012: 1-12.ZHAI Qianru. Research on various poses face image registration[D]. Dalian:Dalian Maritime University, 2012:1-12.
[7] SETHURAM A, SARAGIH J, RICANEK K, et al. Extremely dense face registration: comparing automatic landmarking algorithms for general and ethno-gender models[C]//IEEE Fifth International Conference. Arlington VA, 2012: 135-142.
[8] LIN H, LIANG L, DU P, et al. Image registration based on Fourier-Mellin transform[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 649-652.
[9] 刘小军,杨杰,孙坚伟,等. 基于SIFT的图像配准方法[J]. 红外与激光工程, 2008, 37(1): 156-160.LIU Xiaojun, YANG Jie, SUN Jianwei, et al. Image registration approach based on SIFT[J]. Infrared and Laser Engineering, 2008, 37(1): 156-160.
[10] FUMIHIKO S. Image matching based on relation between pixels located on the maximum and minimum gray-levels in local area[J]. IEEE Transactions on Electrical and Electronic Engineering, 2007, 12(2): 169-178.
[11] TRAJKOCIC M, HEDLEY M. Fast corner detection[J]. Image and Vision Computing, 1998, 16(2): 75-87.
[12] 苏延超,艾海舟,劳世竑,等. 基于非线性Boosting回归的多视角人脸配准[J]. 自动化学报, 2010, 36(4): 522-527.SU Yanchao, AI Haizhou, LAO Shihong, et al. Non-linear boosting regression for multi-view face alignment[J]. Acta Automatica Sinica, 2010, 36(4): 522-527.
[13] 彭地.图像配准技术与优化算法研究[D]. 上海:复旦大学, 2011: 8-25.PENG Di. Image alignment technology and optimization algorithm research[D]. Shanghai:Fudan University, 2011: 8-25.
[14] LOWE D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[15] LOWE D. Object recognition from local scale invariant features[C]//International Conference on Computer Vision. Corfu, Greece, 1999: 1150-1157.
[16] LINDEBERG T. Scale-space theory: A basic tool for analysing structures at different scales[J]. Journal of Applied Statistics, 1994, 21(2): 224-270.
[17] LI Weijun, XU Jian, WANG Shoujue. A fast eye location algorithm based on geometric complexity[C]//Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou, China, 2004: 4105-4107.
[18] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA, 2005, 1: 886-893.

相似文献/References:

[1]金一,阮秋琦.一种局部加权的二维主成分分析算法及其在人脸识别中的应用[J].智能系统学报,2007,2(03):25.
 JIN Yi,RUAN Qiu-qi.A partially weighted twodimensional PCA for face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(01):25.
[2]任小龙,苏光大,相 燕.使用第2代身份证的人脸识别身份认证系统[J].智能系统学报,2009,4(03):213.
 REN Xiao-long,SU Guang-da,XIANG Yan.Face authentication system using the Chinese second generation identity card[J].CAAI Transactions on Intelligent Systems,2009,4(01):213.
[3]苏光大.多技术合力的人脸识别系统设计[J].智能系统学报,2009,4(06):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
 SU Guang-da.Face recognition system designed to integrate multiple techniques[J].CAAI Transactions on Intelligent Systems,2009,4(01):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
[4]王科俊,邹国锋,张洁.SPCA参数对单样本人脸识别效果影响分析[J].智能系统学报,2011,6(06):531.
 WANG Kejun,ZOU Guofeng,ZHANG Jie.Analysis of the influence of SPCA parameters on the recognition of a single sample face[J].CAAI Transactions on Intelligent Systems,2011,6(01):531.
[5]杜吉祥,翟传敏,叶永青.使用稀疏约束非负矩阵分解算法的跨年龄人脸识别[J].智能系统学报,2012,7(03):271.
 DU Jixiang,ZHAI Chuanmin,YE Yongqing.An agespan face recognition method based on an NMF algorithm with sparseness constraints[J].CAAI Transactions on Intelligent Systems,2012,7(01):271.
[6]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报,2015,10(6):912.[doi:10.11992/tis.201509025]
 SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10(01):912.[doi:10.11992/tis.201509025]
[7]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11(01):279.[doi:10.11992/tis.201603026]
[8]刘训利,龚勋,王国胤.一种基于非残差估计线性表示模型的人脸识别[J].智能系统学报,2014,9(03):285.[doi:10.3969/j.issn.1673-4785.201309065]
 LIU Xunli,GONG Xun,WANG Guoyin.Face recognition based on the linear representation model without residual estimation[J].CAAI Transactions on Intelligent Systems,2014,9(01):285.[doi:10.3969/j.issn.1673-4785.201309065]
[9]夏洋洋,龚勋,洪西进.人脸识别背后的数据清理问题研究[J].智能系统学报,2017,12(05):616.[doi:10.11992/tis.201706025]
 XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12(01):616.[doi:10.11992/tis.201706025]
[10]余拓,陈莹.基于加权边缘弱化引导滤波的人脸光照补偿[J].智能系统学报,2018,13(03):373.[doi:10.11992/tis.201612011]
 YU Tuo,CHEN Ying.Face illumination compensation based on weighted edge-weakening guided image filter[J].CAAI Transactions on Intelligent Systems,2018,13(01):373.[doi:10.11992/tis.201612011]

备注/Memo

备注/Memo:
收稿日期:2013-12-31;改回日期:。
基金项目:国家自然科学基金资助项目(90920013).
作者简介:阮晓虎,男,1986年生,硕士研究生,主要研究方向为图像、视频处理与模式识别。参与国家自然科学基金重大研究计划1项,获得专利1项;李卫军,男,1975年生,研究员,博士生导师,博士,主要研究方向为高维形象计算、模式识别、计算机视觉,主要研究方向为仿生图像处理技术、仿生模式识别理论与方法、近红外光谱定性分析技术、高维信息计算。近年来主持国家自然科学基金项目2项,企业合作研究项目3项,发表学术论文18篇;覃鸿,女,1977年生,工程师,博士,主要研究方向为智能信息处理、仿生信息学理论与技术应用、模式识别。
通讯作者:李卫军.E-mail:wjli@semi.ac.cn.
更新日期/Last Update: 2015-06-16