[1]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报,2014,9(02):210-213.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9(02):210-213.[doi:10.3969/j.issn.1673-4785.201307014]
点击复制

基因表达数据在邻域关系中的特征选择(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年02期
页码:
210-213
栏目:
出版日期:
2014-04-25

文章信息/Info

Title:
Gene expression data feature selection with neighborhood relation
作者:
陈玉明1 吴克寿1 李向军2
1. 厦门理工学院 计算机科学与技术系, 福建 厦门 361024;
2. 南昌大学 计算机科学与技术系, 江西 南昌 330031
Author(s):
CHEN Yuming1 WU Keshou1 LI Xiangjun2
1. Department of Computer Science and Technology, Xiamen University of Technology, Xiamen 361024, China;
2. Department of Computer Science and Technology, Nanchang University, Nanchang 330031, China
关键词:
粗糙集邻域关系基因表达数据特征选择分类
Keywords:
rough setsneighborhood relationgene expression datafeature selectionclassification
分类号:
TP391
DOI:
10.3969/j.issn.1673-4785.201307014
摘要:
基因特征选择是基因表达数据分析中的一种重要方法。粗糙集是一种处理不确定性、不一致性、不精确性数据的有效分类工具,其特点是保持基因表达数据集的分类能力不变,进行基因特征选择。为了避免传统粗糙集特征选择方法所必需的离散化过程带来的信息损失,将邻域粗糙集特征选择方法应用于基因的特征选取,提出了基于邻域粗糙集的基因选择方法。该方法从所有特征出发,根据特征重要度逐步删除冗余的特征,最后得到关键特征组进行分类研究。在2个标准的基因表达数据集上进行特征选取,并进行了分类实验,实验结果表明该方法是有效可行的。

相似文献/References:

[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报,2008,3(06):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3(02):492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报,2009,4(02):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4(02):112.
[3]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(02):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(02):40.
[4]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(02):8.
[5]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报,2007,2(06):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2(02):65.
[6]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报,2009,4(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(02):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[7]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(02):132.
[8]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报,2011,6(03):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(02):254.
[9]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
[10]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10(02):783.[doi:10.11992/tis.201406045]
[11]冯丹,黄洋,石云鹏,等.连续型数据的辨识矩阵属性约简方法[J].智能系统学报,2017,12(03):371.[doi:10.11992/tis.201704032]
 FENG Dan,HUANG Yang,SHI Yunpeng,et al.A discernibility matrix-based attribute reduction for continuous data[J].CAAI Transactions on Intelligent Systems,2017,12(02):371.[doi:10.11992/tis.201704032]

备注/Memo

备注/Memo:
收稿日期:2012-10-26。
基金项目:国家自然科学青年基金资助项目(61103246)
通讯作者:陈玉明,男,1977年生,副教授,主要研究方向为粒计算、粗糙集、模式识别、数据挖掘等。E-mail:cym0620@163.com.
更新日期/Last Update: 1900-01-01