[1]刘杨磊,梁吉业,高嘉伟,等.基于Tri-training的半监督多标记学习算法[J].智能系统学报,2013,8(5):439-445.[doi:10.3969/j.issn.1673-4785.201305033]
 LIU Yanglei,LIANG Jiye,GAO Jiawei,et al.Semi-supervised multi-label learning algorithm based on Tri-training[J].CAAI Transactions on Intelligent Systems,2013,8(5):439-445.[doi:10.3969/j.issn.1673-4785.201305033]
点击复制

基于Tri-training的半监督多标记学习算法

参考文献/References:
[1]TSOUMAKAS G, KATAKIS I. Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 1-13.
[2]ZHU Xiaojin. Semi-supervised learning literature survey [R]. Madison, USA: University of WisconsinMadison, 2008.
[3]常瑜,梁吉业,高嘉伟,等.一种基于Seeds集和成对约束的半监督聚类算法[J].南京大学学报:自然科学版, 2012, 48(4): 405-411.
        CHANG Yu, LIANG Jiye, GAO Jiawei, et al. A semi-supervised clustering algorithm based on seeds and pair wise constraints[J]. Journal of Nanjing University: Natural Sciences, 2012, 48(4): 405-411.
[4]ZHOU Zhihua, ZHANG Minling, HUANG Shengjun, et al. Multi-instance multi-label learning[J]. Artificial Intelligence, 2012, 176(1): 2291-2320.
[5]ZHANG Minling, ZHANG Kun. Multi-label learning by exploiting label dependency[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA,2010: 999-1007.
[6]BOUTELL M R, LUO Jiebo, SHEN Xipeng, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771.
[7]FURNKRANZ J, HULLERMEIER E, MENCIA E L, et al. Multi-label classification via calibrated label ranking[J]. Machine Learning, 2008, 73(2): 133-153.
[8]TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification[C]//Proceedings of the 18th European Conference on Machine Learning. Berlin: Springer, 2007: 406-417.
[9]ZHANG Minling, ZHOU Zhihua. ML-kNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048.
[10]ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[M]//DIETTERICH T G, BECKER S, GHAHRAMANI Z. Advances in Neural Information Processing Systems 14. Cambridge, USA: The MIT Press, 2002: 681-687.
[11]LIU Yi, JIN Rong, YANG Liu. Semi-supervised multi-label learning by constrained non-negative matrix factorization[C]//Proceedings of the 21st National Conference on Artificial Intelligence. Menlo Park, USA, 2006: 421-426.
[12]姜远,佘俏俏,黎铭,等.一种直推式多标记文档分类方法[J].计算机研究与发展, 2008, 45(11): 1817-1823.
        JIANG Yuan, SHE Qiaoqiao, LI Ming, et al. A transductive multi-label text categorization approach[J]. Journal of Computer Research and Development, 2008, 45(11): 1817-1823.
[13]CHEN Gang, SONG Yangqiu, WANG Fei, et al. Semi-supervised multi-label learning by solving a Sylvester equation[C]//Proceedings of SIAM International Conference on Data Mining. Los Alamitos, USA, 2008: 410-419.
[14]SUN Yuyin, ZHANG Yin, ZHOU Zhihua. Multi-label learning with weak label[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence. Menlo Park, USA,2010: 593-598.
[15]孔祥南,黎铭,姜远,等.一种针对弱标记的直推式多标记分类方法[J].计算机研究与发展, 2010, 47(8): 1392-1399.
         KONG Xiangnan, LI Ming, JIANG Yuan, et al. A transductive multi-label classification method for weak labeling[J]. Journal of Computer Research and Development, 2010, 47(8): 1392-1399.
[16]KONG Xiangnan, NG M K, ZHOU Zhihua. Transductive multilabel learning via label set propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(3): 704-719.
[17]李宇峰,黄圣君,周志华.一种基于正则化的半监督多标记学习方法[J].计算机研究与发展, 2012, 49(6): 1272-1278.
        LI Yufeng, HUANG Shengjun, ZHOU Zhihua. Regularized semi-supervised multilabel learning[J]. Journal of Computer Research and Development, 2012, 49(6): 1272-1278.
[18]周志华,王珏.机器学习及其应用[M].北京:清华大学出版社, 2007: 259-275.
[19]ZHOU Zhihua, LI Ming. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
[20]Multi-label datasets[EB/OL]. [2013-01-06]. http://sourceforge.net/projects/mulan/files/datasets/.
相似文献/References:
[1]李建元,周脚根,关佶红,等.谱图聚类算法研究进展[J].智能系统学报,2011,6(5):405.
 LI Jianyuan,ZHOU Jiaogen,GUAN Jihong,et al.A survey of clustering algorithms based on spectra of graphs[J].CAAI Transactions on Intelligent Systems,2011,6(5):405.
[2]蒋新华,高晟,廖律超,等.半监督SVM分类算法的交通视频车辆检测方法[J].智能系统学报,2015,10(5):690.[doi:10.11992/tis.201406044]
 JIANG Xinhua,GAO Sheng,LIAO Ljuchao,et al.Traffic video vehicle detection based on semi-supervised SVM classification algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(5):690.[doi:10.11992/tis.201406044]
[3]张钢,谢晓珊,黄英,等.面向大数据流的半监督在线多核学习算法[J].智能系统学报,2014,9(3):355.[doi:10.3969/j.issn.1673-4785.201403067]
 ZHANG Gang,XIE Xiaoshan,HUANG Ying,et al.An online multi-kernel learning algorithm for big data[J].CAAI Transactions on Intelligent Systems,2014,9(5):355.[doi:10.3969/j.issn.1673-4785.201403067]
[4]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13(5):808.[doi:10.11992/tis.201804051]
[5]赵晓晓,周治平.结合稀疏表示与约束传递的半监督谱聚类算法[J].智能系统学报,2018,13(5):855.[doi:10.11992/tis.201703013]
 ZHAO Xiaoxiao,ZHOU Zhiping.A semi-supervised spectral clustering algorithm combined with sparse representation and constraint propagation[J].CAAI Transactions on Intelligent Systems,2018,13(5):855.[doi:10.11992/tis.201703013]
[6]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报,2019,14(3):566.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14(5):566.[doi:10.11992/tis.201804056]
[7]严菲,王晓栋.鲁棒的半监督多标签特征选择方法[J].智能系统学报,2019,14(4):812.[doi:10.11992/tis.201809017]
 YAN Fei,WANG Xiaodong.A robust, semi-supervised, and multi-label feature selection method[J].CAAI Transactions on Intelligent Systems,2019,14(5):812.[doi:10.11992/tis.201809017]
[8]王一宾,裴根生,程玉胜.弹性网络核极限学习机的多标记学习算法[J].智能系统学报,2019,14(4):831.[doi:10.11992/tis.201806005]
 WANG Yibin,PEI Gensheng,CHENG Yusheng.Multi-label learning algorithm of an elastic net kernel extreme learning machine[J].CAAI Transactions on Intelligent Systems,2019,14(5):831.[doi:10.11992/tis.201806005]
[9]黄琴,钱文彬,王映龙,等.代价敏感数据的多标记特征选择算法[J].智能系统学报,2019,14(5):929.[doi:10.11992/tis.201807027]
 HUANG Qin,QIAN Wenbin,WANG Yinglong,et al.Multi-label feature selection algorithm for cost-sensitive data[J].CAAI Transactions on Intelligent Systems,2019,14(5):929.[doi:10.11992/tis.201807027]
[10]程龙,钱文彬,王映龙,等.弱标记不完备决策系统的增量式属性约简算法[J].智能系统学报,2020,15(6):1079.[doi:10.11992/tis.202001017]
 CHENG Long,QIAN Wenbin,WANG Yinglong,et al.An incremental attribute reduction algorithm for incomplete decision system with weak labeling[J].CAAI Transactions on Intelligent Systems,2020,15(5):1079.[doi:10.11992/tis.202001017]

备注/Memo

收稿日期:2013-05-09.     网络出版日期:2013-09-29. 
基金项目:国家“973”计划前期研究专项(2011CB311805);山西省科技攻关计划资助项目(20110321027-01);山西省科技基础条件平台建设项目(2012091002-0101).
通信作者:梁吉业. E-mail: ljy@sxu.edu.cn.
作者简介:
刘杨磊,男,1990年生,硕士研究生,主要研究方向为机器学习.发表学术论文3篇,获得计算机软件著作权登记3项.
梁吉业,男,1962年生,教授,博士生导师,博士,主要研究方向为机器学习、计算智能、数据挖掘等.先后主持国家自然科学基金重点项目1项、国家“863”计划项目2项,国家“973”计划前期研究专项1项、国家自然科学基金项目4项.发表学术论文150余篇,出版著作2部,获发明专利8项.
高嘉伟,男,1980年生,讲师,主要研究方向为机器学习.参与国家“863”计划项目1项、国家自然科学基金项目3项和山西省自然科学基金项目4项,发表学术论文10余篇.

更新日期/Last Update: 2013-11-28
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134