[1]王兆伟,肖 扬,刘湘黔.基于粒子群算法的MIMO CDMA平坦衰落信道均衡器[J].智能系统学报,2008,3(01):38-42.
 WANG Zhao-wei,XIAO Yang,LIU Xiang-qian.Application of particle swarm optimization in MIMO CDMA flat fading channel equalizers[J].CAAI Transactions on Intelligent Systems,2008,3(01):38-42.
点击复制

基于粒子群算法的MIMO CDMA平坦衰落信道均衡器(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第3卷
期数:
2008年01期
页码:
38-42
栏目:
出版日期:
2008-02-25

文章信息/Info

Title:
Application of particle swarm optimization in MIMO CDMA flat fading channel equalizers
文章编号:
1673-4785(2008)01-0038-05
作者:
王兆伟肖  扬刘湘黔
北京交通大学信息科学研究所,北京100044
Author(s):
WANG Zhao-wei XIAO Yang LIU Xiang-qian
Institute of Information Science, Beijing Jiaotong University, Beijing 100044,China
关键词:
码分多址均衡器多输入多输出平坦衰落信道粒子群优化算法参考信号
Keywords:
CDMAchannel equalizerMIMO flat fading channelPSOreference sig nals
分类号:
TN911.5;TP18
文献标志码:
A
摘要:
粒子群优化算法是一类有效的随机全局优化技术,它利用粒子种群搜索解空间,每个粒子表示一个被优化问题的潜在解,通过粒子间的相互作用发现复杂空间中的最优区域. MIMO系统在不增加带宽的前提下,成倍地提高通信系统的容量和频谱利用率,而复杂的传播信道使接收信号产生ISI.基于粒子群优化算法的MIMO信道均衡器应用于MIMO CDMA系统能有效抑制平坦衰落、信道间干扰以及背景噪声干扰.仿真结果证明其误码率性能明显优于传统均衡器,收敛速度快于基于GA的均衡器且更易于实现.
Abstract:
Particle swarm optimization (PSO) algorithms are efficient in stochast ic global optimization. PSO algorithms use a particle population to search for t he solution space, in which each particle represents a solution to the problem t o be optimized, and finds optimal regions in complex searching spaces through th e interaction of individuals in the population. The MIMO scheme can multiply the channel capacity of wireless communication several times without increased band width, but the complex channels produce intersymbol interference (ISI) in receiv ed signals. We studied a PSO MIMO channel equalizer in an MIMO CDMA system that is not sensitive to the coherency of channels, flat fading, or noise. Simulation s show that the biterror rate (BER) performance of the proposed PSO MIMO cha n nel equalizer is better than that of conventional adaptive equalizers, converges faster than GAbased equalizers, and is easier to implement.

参考文献/References:

[1]KENNEDY J, EBERHART R C. Particle swarm optimization [C] // Proce edi ngs of the 1995 IEEE International Conference on Networks. Perth,Australia , 1995.
[2]KRUSIENSKI D J,JENKINS W K. Adaptive filtering via particle swarm optimiz ation[C]// Proc 37th Asilomar Conf on Signals, Systems, and Computers. Monterey, Canada, 2003.
[3]刘 成,肖 扬.粒子群优化算法在多用户检测中的应用[J].中国铁道科学,2006,27(4):129132.
 LIU Cheng, XIAO Yang. Particle swarm optimization in multiuser detection[J]. C hina Railway Science, 2006,27(4): 129132.
[4]GUO Z Q, XIAO Y. MIMO system multiuser detection based on particle s warm optimization algorithm[C]// Proc 2006 8th International Conference on Sig nal Processing.Guilin, 2006.
[5]TELATAR I E. Capacity of multiantenna Gaussian channels[J]. Euro pean Trans on Telecomm, 1999, 10 (6): 585595.
[6]FOCHINI G J, GANS M J. On limits of wireless communications in a fa ding environment when using multiple antennas[J]. Wireless Personal Communicat ions, 1998, 6 (3): 311335.
[7]CHEN W, XIAO Y,ZHAO Y. The algorithm implement of WCDMA channel estimatio n[C]// 7th International Conference on Signal Processing Proceedings. Be ij ing,2004.
[8]XIAO Y,LEE M H. MIMO multiuser detection for CDMA systems[C]// 2006 8th International Conference on Signal Processing. Guilin, 2006.
[9]SHIU D S, FOSCHINI G J, GANS M J. Fading correlation and its effect on the capacity of multielement antenna systems[J].IEEE Trans Commun, 2000, 48(3) : 502513.
[10]CHOI R L, LETAIEF K B,MURCH R D. MIMO CDMA antenna systems[C]// 2000 IEEE International Conference on Communications(ICC 2000). New Orlea n s,USA, 2000.
[11]XIAO Y, LEE M H. Low complexity MIMOLDPC CDMA systems over multipath ch annels[J]. IEICE Transactions on Communications, 2006, E89B(5): 17131717. 
[12]ZHENG K,WANG W B. Analysis and optimization of pilotchanne lassisted Q PSK for DSCDMA systems[J]. IEEE Transactions on Communications,1998,46(9): 11221124.
[13]SHI Y,EBERHART R C. A modified particle swarm optimizer [C]// Pr oceedi ngs of the 1998 IEEE World Congress on Computational Intelligence. Alaska,U SA,1998.
[14]肖 扬,宋明艳. 变频长自适应数字滤波器的稳定条件[J].通信学报,200 1,22(10):8892.
 XIAO Yang, SONG Mingyan. Stability conditions of variable stepsize adaptive di gital filter[J]. Journal on Communications, 2001, 22(10): 8892

备注/Memo

备注/Memo:
收稿日期:2007-05-18.
作者简介:
 王兆伟,男,1982生,博士研究生,主要研究方向为通信网体系结构、无线信道均衡、智能优化算法.
肖 扬,男,1955年生,教授, 博士生导师,主要研究方向为时空处理、多维系统理论与应用、多维信息处理.发表论文100余篇, 其中被SCI、EI、ISTP检索80余篇.
刘湘黔,男,1971年生,副教授,硕士生导师,主要研究方向为网络控制、鲁棒控制等.
通讯作者:王兆伟.E-mail:05120357@bjtu.edu.cn.
更新日期/Last Update: 2009-05-10