[1]马慧,王科俊.采用旋转校正的指静脉图像感兴趣区域提取方法[J].智能系统学报,2012,7(03):230-234.
 MA Hui,WANG Kejun.A region of interest extraction method using rotation rectified finger vein images[J].CAAI Transactions on Intelligent Systems,2012,7(03):230-234.
点击复制

采用旋转校正的指静脉图像感兴趣区域提取方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年03期
页码:
230-234
栏目:
出版日期:
2012-06-25

文章信息/Info

Title:
A region of interest extraction method using rotation rectified finger vein images
文章编号:
1673-4785(2012)03-0230-05
作者:
马慧1王科俊2
1.黑龙江大学 电子工程学院,黑龙江 哈尔滨 150080;
2.哈尔滨工程大学 自动化学院,黑龙江 哈尔滨 150001
Author(s):
MA Hui1 WANG Kejun2
1. College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
2. College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
静脉图像手指静脉感兴趣区域提取旋转校正图像分割静脉识别
Keywords:
vein images finger vein region of interest extraction rotation rectification image segmentation finger vein recognition
分类号:
TP391.41
文献标志码:
A
摘要:
针对静脉图像采样过程中存在的旋转、平移等非线性因素造成手指静脉图像定位困难的问题,考虑图像非接触式采集特点,提出一种采用旋转校正的手指静脉图像感兴趣区域提取方法.首先对读入的手指静脉图像采用Kapur熵阈值法分割出手指区域,再依据图像的质心对图像进行旋转校正,最后根据图像中每列像素竖直方向上的投影值和手指区域的边缘轮廓,确定出感兴趣区域的位置.实验结果表明,该方法能够准确地提取出静脉图像的感兴趣区域,有效地提高识别系统的性能.
Abstract:
In order to reduce the influence of nonlinear translation and rotation on the positioning of finger vein images in the process of vein image sampling, a region of interest extraction method that utilizes a rotation rectified finger vein image was proposed. The method took account of the noncontact collecting characteristics. First, the finger regions of finger vein images were extracted using the Kapur entropy threshold method. These images were then rotated along their centroids; finally, the regions of interest were extracted according to the vertical projection value of every column pixel and the outline of the finger regions. Experimental results show that this algorithm can not only accurately extract the regions of interest of finger vein images, but also effectively improve the performance of the vein recognition system. 

参考文献/References:

[1]贾旭,薛定宇,崔建江,等.基于Contourlet子带能量特征多HMM融合的静脉识别[J].电子与信息学报, 2011, 33(8): 13771382.
 JIA Xu, XUE Dingyu, CUI Jianjiang, et al. Vein recognition based on fusing multi HMMs with Contourlet subband energy observations[J]. Journal of Electronics & Information Technology, 2011, 33(8): 13771382.
[2]KUMAR A, PRATHYUSHA K V. Personal authentication using hand vein triangulation and knuckle shape[J]. IEEE Transactions on Image Processing, 2010, 9(18): 21272136.
[3]康文雄,李华嵩,邓飞其.静脉灰度图像拓扑特征提取方法[J].中国科学:信息科学, 2011, 41(3): 324337.
 KANG Wenxiong, LI Huasong, DENG Feiqi. Direct grayscale extraction of topographic features for vein recognition[J]. Scientia Sinica: Informationis, 2011, 41(3): 324337.
[4]王科俊,刘靖宇,马慧,等.手指静脉图像质量评价[J].智能系统学报, 2011, 6(4): 324327.
WANG Kejun, LIU Jingyu, MA Hui, et al. A finger vein image quality assessment method[J]. CAAI Transactions on Intelligent Systems, 2011, 6(4): 324327.
[5]陈立伟,倪杰.基于多阈值模糊增强的手指静脉图像分割[J].应用科技, 2011, 38(4): 1418.
CHEN Liwei, NI Jie. Method for finger vein feature segmentation based on multithreshold fuzzy enhancement[J]. Applied Science and Technology, 2011, 38(4): 1418.
[6]余成波,秦华锋.生物特征识别技术:手指静脉识别技术[M].北京:清华大学出版社, 2009: 117119.
[7]宋尚玲.鼻部毛囊识别和手指静脉识别[D]. 济南:山东大学, 2009: 6264.
SONG Shangling. Nose pore recognition and finger vein recognition[D]. Ji’nan: Shandong University, 2009: 6264.
[8]KUMAR A, WONG D C M, SHEN H C, et al. Personal verification using palmprint and hand geometry biometric[C]//Proceedings of the 4th International Conference on Audio and VideoBased Biometric Person Authentication. Berlin/Heidelberg: SpringerVerlag, 2003: 668678.
[9]李秀艳,刘铁根,邓仕超,等.基于SURF算子的快速手背静脉识别[J].仪器仪表学报, 2011, 32(4): 831836.
LI Xiuyan, LIU Tiegen, DENG Shichao, et al. Fast recognition of hand vein with SURF descriptors[J]. Chinese Journal of Scientific Instrument, 2011, 32(4): 831836.
[10]WANG J G, YAU W Y, SUWANDY A, et al. Person recognition by fusing palmprint and palm vein images based on “Laplacianpalm” representation[J]. Pattern Recognition, 2008, 41(5): 15141527.
[11]李强.手部特征识别及特征级融合算法研究[D].北京:北京交通大学, 2006: 2224.
LI Qiang. Research on hand feature recognition and feature level fusion[D]. Beijing: Beijing Jiaotong University, 2006: 2224.

相似文献/References:

[1]王科俊,刘靖宇,马慧,等.手指静脉图像质量评价[J].智能系统学报,2011,6(04):324.
 WANG Kejun,LIU Jingyu,MA Hui,et al.A finger vein image quality assessment method[J].CAAI Transactions on Intelligent Systems,2011,6(03):324.
[2]谭营,王军.手指静脉身份识别技术最新进展[J].智能系统学报,2011,6(06):471.
 TAN Ying,WANG Jun.Recent advances in finger vein based biometric techniques[J].CAAI Transactions on Intelligent Systems,2011,6(03):471.

备注/Memo

备注/Memo:
收稿日期: 2011-12-27.网络出版日期:2012-05-27.
基金项目:国家自然科学基金资助项目(60975022);国家“863”计划资助项目(2006AA04Z248);黑龙江大学青年基金资助项目(QL201111).
通信作者:马慧. E-mail: mahui929@126.com.
作者简介:
马慧,女,1982年生,讲师,博士,主要研究方向为模式识别、生物特征识别.发表学术论文7篇,申请专利4项.
王科俊,男,1962年生,教授,博士生导师,博士,哈尔滨工程大学模式识别与智能系统学科带头人.主要研究方向为模糊混沌神经网络、自适应逆控制理论、可拓控制、网络智能控制、模式识别、多模态生物特征识别、联脱机指纹考试身份鉴别系统、微小型机器人系统等.完成科研项目20余项,目前在研项目10余项.曾获得部级科技进步二等奖2项、三等奖3项,省高校科学技术一等奖1项、二等奖1项.获发明专利1项、公开3项,国家版权局软件著作权登记1项.发表学术论文180余篇,出版学术专著3部、国防教材1部,主审教材2部.
更新日期/Last Update: 2012-09-05