[1]向峥嵘,陈庆伟.基于小波和LSSVM的软测量建模方法[J].智能系统学报,2010,5(01):63-66.
 XIANG Zheng-rong,CHEN Qing-wei.An approach to soft sensor modeling based onwavelets and a least square support vector machine[J].CAAI Transactions on Intelligent Systems,2010,5(01):63-66.
点击复制

基于小波和LSSVM的软测量建模方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第5卷
期数:
2010年01期
页码:
63-66
栏目:
学术论文—智能系统
出版日期:
2010-02-25

文章信息/Info

Title:
An approach to soft sensor modeling based onwavelets and a least square support vector machine
文章编号:
1673-4785(2010)01-0063-04
作者:
向峥嵘陈庆伟
南京理工大学 自动化学院,江苏 南京 210094
Author(s):
XIANG Zheng-rong CHEN Qing-wei
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
关键词:
软测量最小二乘支持向量机小波分析量子粒子群优化
Keywords:
soft sensing least square support vector machine (LSSVM) wavelet quantum particle swarm optimization
分类号:
TP274
文献标志码:
A
摘要:
针对工业过程中某些重要过程变量难以实现在线检测的问题,提出了一种基于小波和最小二乘支持向量机(LSSVM)的软测量建模方法.首先通过小波变换把样本数据序列分解为不同频段的子序列,然后对这些子序列分别采用LSSVM进行建模,最后通过小波重构得到主导变量的估计值.其中采用量子粒子群算法(PSO)来优化选取LSSVM参数.通过仿真实验验证此方法,实验结果表明所提出的方法具有估计精度高、泛化能力强等优点.
Abstract:
Some industrial process variables are very difficult to measure. To overcome this problem, a soft sensor modeling, based on wavelets and a least square support vector machine (LSSVM), was proposed. Initially, a stream of sample data was decomposed into subsequences with different frequences. This was done on the basis of wavelet transform. Then the respective subsequences were modeled by appropriate SVMs. Finally, estimated values for the primary variables were obtained by wavelet reconstruction. A quantum particle swarm optimization (QPSO) algorithm was employed to select parameters for the LSSVM and the kernel function. Simulation results confirmed that the proposed method has high precision and good generalization ability.

参考文献/References:

[1]徐 敏,俞金寿. 软测量技术[J]. 石油化工自动化, 1998, 2: 13.
 XU Min, YU Jinshou. Softsensing technique[J]. Automation in PetroChemical Industry, 1998, 2: 13.
[2]GONZALEZ G D. Soft sensors for processing plants[C]//Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. Honolulu, Hawaii, USA, 1999: 5969. 
[3]VAPNIK V N. The nature of statistical learning theory [M]. New York: SpringerVerlag, 1995: 123180.
[4]张 莉,席裕庚. 基于支持向量机的可分离非线性动态系统辨识[J]. 自动化学报, 2005, 31(6): 965969. 
ZHANG Li, XI Yugeng. Identification of separable variable nonlinear dynamical system based on SVMs[J]. Acta Automatica Sinica, 2005, 31(6): 965969.
[5]SUYKENS J A K. Nonlinear modeling and support vector machines[C]//Proceedings of Technology of the 18th IEEE Instrumentation and Measurement Conference. Budapest, Hungary, 2001, 1: 287294.
[6]陈念贻, 陆文聪. 支持向量机算法在化学化工中的应用[J]. 计算机与应用化学, 2002, 19(6): 674676. 
CHEN Nianyi, LU Wencong. Support vector machine applied to chemistry and chemical technology[J]. Computer and Applied Chemistry, 2002, 19(6): 674676.
[7]SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293300.
[8]SUYKENS J A K, VAN GESTEL T, DE BRABANTER J, et al. Least squares support vector machines[M]. Singapore: World Scientific Press, 2002: 308342.
[9]XIANG Zhengrong, LIU Songqing. Component content softsensor in rareearth extraction based on PSO and LSSVM[C]//The 4th International Conference on Natural Computation (ICNC’08). Jinan, China, 2008, 6: 392395.
 [10]徐 晔, 杜文莉, 钱 锋. 基于核主元分析和最小二乘支持向量机的软测量建模[J]. 系统仿真学报, 2007, 19(17): 38733875.
 XU Ye, DU Wenli, QIAN Feng. Soft sensor modeling based on KPCA and least square SVM[J]. Journal of System Simulation, 2007, 19(17): 38733875.
[11]张 英, 苏宏业, 褚 健. 基于模糊最小二乘支持向量机的软测量建模[J]. 控制与决策, 2005, 20(6): 621624.
 ZHANG Ying, SU Hongye, CHU Jian. Soft sensor modeling based on fuzzy least squares support vector machines [J]. Control and Decision, 2005, 20(6): 621624.
[12]阎威武, 朱宏栋, 邵惠鹤. 基于最小二乘支持向量机的软测量建模[J]. 系统仿真学报, 2003, 15(10): 14941496.
YAN Weiwu, ZHU Hongdong, SHAO Huihe. Soft sensor modeling based on support vector machines[J]. Journal of System Simulation, 2003, 15(10): 14941496.
[13]刘 涛,曾祥利,曾 军. 实用小波分析入门[M]. 北京: 国防工业出版社, 2006: 116131. [14]SUN Jun, XU Wenbo, FENG Bin. A global search strategy of quantumbehaved particle swarm optimization[C]//Proceedings of IEEE Conference on Cybernetics and Intelligent Systems. Singapore, 2004: 111116.
[15]SUN Jun, FENG Bin, XU Wenbo. Particle swarm optimization with particles having quantum behavior[C]//Proceedings of 2004 Congress on Evolutionary Computation. Piscataway, USA, 2004: 325331.
[16]CHAPELLE O, VAPNIK V, BOUSQUET O, et al. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1): 131159.
[17] 许勇刚,杨 辉. 基于RBF网络的稀土萃取过程组分含量软测量[J]. 稀土, 2007, 28(5): 1922.
XU Yonggang, YANG Hui. Component content softsensor based on RBF neural network in rare earth countercurrent extraction process[J]. Chinese Rare Earths, 2007, 28(5): 1922.

相似文献/References:

[1]颜学峰.优化岭参数的非线性岭回归及4-CBA含量软测量[J].智能系统学报,2006,1(01):74.
 YAN Xue-feng.Modified nonlinear ridge regression with optimal ridge pa rameter and its application to 4-CBA soft sensor[J].CAAI Transactions on Intelligent Systems,2006,1(01):74.
[2]钱晓山,阳春华.基于GEP的最小二乘支持向量机模型参数选择[J].智能系统学报,2012,7(03):225.
 QIAN Xiaoshan,YANG Chunhua.A parameter selection method of a least squares support vector machine based on gene expression programming[J].CAAI Transactions on Intelligent Systems,2012,7(01):225.
[3]嵇小辅,张翔.基于FCM与集成高斯过程回归的赖氨酸发酵软测量[J].智能系统学报,2015,10(01):156.[doi:10.3969/j.issn.1673-4785.201310070]
 JI Xiaofu,ZHANG Xiang.Soft measurement of lysine fermentation based on FCM and integrated Gaussian process regression[J].CAAI Transactions on Intelligent Systems,2015,10(01):156.[doi:10.3969/j.issn.1673-4785.201310070]

备注/Memo

备注/Memo:
收稿日期:2008-10-08.
基金项目:江苏省自然科学基金资助项目(BK2007210).
通信作者:向峥嵘.E-mail:xiangzr@mail.njust.edu.cn.
作者简介:
向峥嵘,男,1969年生,副教授、博士,IEEE会员,中国人工智能学会会员.主要研究方向为非线性系统、鲁棒控制、智能控制、数据挖掘等.主持及承担了多项国家自然科学、省自然科学基金及国防预研项目.2002—2006年曾多次到香港城市大学和香港理工大学做合作研究,发表学术论文90余篇.
陈庆伟,男,1963年生, 教授、博士生导师,中国自动化学会空间及运动体控制委员会委员,中国自动化学会智能自动化委员会委员,江苏省自动化学会理事,《兵工学报》编委.主要研究方向智能控制、非线性系统、交流伺服系统、网络控制等.主持及承担了多项国家自然科学基金及国防预研项目的研究工作,发表学术论文50余篇.
更新日期/Last Update: 2010-04-06