[1]李冰,王月,张易牧,等.改进RT-DETR的金属表面缺陷检测算法[J].智能系统学报,2025,20(6):1404-1419.[doi:10.11992/tis.202502021]
LI Bing,WANG Yue,ZHANG Yimu,et al.Metal surface defect detection algorithm based on improved RT-DETR algorithm[J].CAAI Transactions on Intelligent Systems,2025,20(6):1404-1419.[doi:10.11992/tis.202502021]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第6期
页码:
1404-1419
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-11-05
- Title:
-
Metal surface defect detection algorithm based on improved RT-DETR algorithm
- 作者:
-
李冰1,2, 王月1, 张易牧1, 魏乐涛1, 颉卓凡1, 叶猛1, 翟永杰1,2
-
1. 华北电力大学 自动化系, 河北 保定 071003;
2. 保定市电力系统智能机器人感知与控制重点实验室, 河北 保定 071003
- Author(s):
-
LI Bing1,2, WANG Yue1, ZHANG Yimu1, WEI Letao1, XIE Zhuofan1, YE Meng1, ZHAI Yongjie1,2
-
1. Department of Automation, North ChinaElectricPower University, Baoding 071003, China;
2. Baoding Key Laboratory of Intelligent Robot Perception and Control in Electric Power System, Baoding 071003, China
-
- 关键词:
-
深度学习; 金属表面缺陷; 小目标; RT-DETR; 特征融合; 注意力机制; 差分卷积; 目标检测
- Keywords:
-
deep learning; metal surface defects; small target; RT-DETR; feature fusion; attention mechanism; difference convolution; object detection
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202502021
- 摘要:
-
针对金属表面缺陷检测任务中检测目标小、尺度变化大、背景复杂等问题,提出了一种基于RT-DETR(real-time detection Transformer)的改进模型——HAS-DETR(high accurancy for small object-DETR)。HAS-DETR通过在骨干网络中引入复合差分卷积,增强对小目标的特征提取能力;构建双重多尺度特征融合模块,有效捕获全局语义信息与细节特征,解决目标尺度变化大的问题;设计全局多尺度注意力机制,替代AIFI(attention-based intra-scale feature interaction)模块中的多头注意力机制,提高模型在复杂背景和多尺度目标场景中的鲁棒性和精确度。在金属表面缺陷数据集上,HAS-DETR在mAP50和mAP50-95上分别较RT-DETR提升了6.5%和4.5%;在公开ADPPP数据集上,mAP50提升了2%,mAP50-95提升了1.3%。实验结果表明:HAS-DETR在保持较高检测效率的同时,有效提升了在复杂背景中对小目标的检测精度,具有良好的实际应用前景。
- Abstract:
-
To address the challenges posed by small detection targets, significant scale variations, and complex backgrounds in metal surface defect detection tasks, an improved model based on RT-DETR (real-time detection transformer) has been proposed. This model is referred to as HAS-DETR (high accuracy for small object-DETR). HAS-DETR enhances the feature extraction capability for small targets by introducing a multiple differential convolution module (MDConv) into the backbone network. A double multiscale feature fusion module is constructed to effectively capture global semantic information and detailed features, addressing the problem of scale variations. Additionally, a global multiscale attention mechanism has been developed to replace the multihead attention mechanism in the AIFI (attention-based intra-scale feature interaction) module. This modification has been shown to enhance the model’s robustness and accuracy in complex backgrounds and multiscale target scenarios. On the metal surface defect dataset, HAS-DETR has been demonstrated to achieve improvements of 6.5% in mAP50 and 4.5% in mAP50-95 compared to RT-DETR. On the public ADPPP dataset, the model demonstrates a 2.0% enhancement in mAP50 and a 1.3% improvement in mAP50-95. Experimental results demonstrate that HAS-DETR significantly enhances the detection accuracy for small objects in complex backgrounds while maintaining high detection efficiency. These findings indicate that HAS-DETR has strong potential for practical industrial applications.
备注/Memo
收稿日期:2025-2-27。
基金项目:国家自然科学基金项目(62373151);国家自然科学基金联合基金重点支持项目(U21A20486);中央高校基本科研业务费专项资金项目(2023JC006);河北省自然科学基金面上项目(F2023502010).
作者简介:李冰,副教授,博士,主要研究方向为模式识别与计算机视觉。主持中央高校基金面上项目2项、主持横向科研项目5项。发表学术论文30余篇,获发明专利授权4项。E-mail:li_bing@ncepu.edu.cn。;王月,硕士研究生,主要研究方向为电力视觉及目标检测。E-mail:2011616203@qq.com。;翟永杰,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金面上项目2项、河北省自然科学基金项目2项。编著教材1部,著作4部。发表学术论文30余篇。E-mail: zhaiyongjie@ncepu.edu.cn。
通讯作者:翟永杰. E-mail:zhaiyongjie@ncepu.edu.cn
更新日期/Last Update:
1900-01-01