[1]赵振博,付天怡,董红斌,等.基于提案增强的解耦特征挖掘旋转检测器[J].智能系统学报,2025,20(5):1123-1135.[doi:10.11992/tis.202410017]
ZHAO Zhenbo,FU Tianyi,DONG Hongbin,et al.Decoupled feature mining rotational detector based on proposal enhancement[J].CAAI Transactions on Intelligent Systems,2025,20(5):1123-1135.[doi:10.11992/tis.202410017]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第5期
页码:
1123-1135
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-09-05
- Title:
-
Decoupled feature mining rotational detector based on proposal enhancement
- 作者:
-
赵振博1, 付天怡1, 董红斌1, 张小平2
-
1. 哈尔滨工程大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001;
2. 中国中医科学院 中医药数据中心, 北京 100700
- Author(s):
-
ZHAO Zhenbo1, FU Tianyi1, DONG Hongbin1, ZHANG Xiaoping2
-
1. School of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;
2. Traditional Chinese Medicine Data Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
-
- 关键词:
-
遥感图像; 目标检测; 旋转目标检测; 小目标; 高密度; 倾斜边界框; 跨尺度融合; 两阶段检测器
- Keywords:
-
remote sensing image; object detection; rotated object detection; small object; high density; oriented bounding box; cross-scale fusion; two-stage detector
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202410017
- 摘要:
-
小而杂乱的物体交织在一起,在遥感图像中尤为常见,给目标检测带来了巨大挑战。在旋转目标检测任务中这个困难更加突出。鉴于此,本文提出了基于提案增强的解耦特征挖掘旋转检测器(decoupled feature mining rotational detector based on proposal enhancement, PDMDet)。首先,采用单阶段检测器取代两阶段检测器的提案生成网络,通过生成高质量提案以减少背景冗余。其次,在相同维度使用自注意力,不同维度使用交叉注意力,通过对相同维度特征增强,不同维度特征交错融合提升检测器对不同尺寸目标的识别能力。最后,鉴于分类和定向边界框回归任务对特征的敏感性不同,本文提出解耦特征细化处理两个不同任务。通过实验,PDMDet在DOTA-v1.0、DOTA-v1.5和HRSC2016这3个数据集上分别取得单尺度78.37%、72.35%、98.60%的平均精度均值,检测准确率高于其他算法,在复杂的旋转目标检测场景具有一定的竞争力。
- Abstract:
-
In remote sensing images, small and cluttered objects often appear intertwined, presenting considerable challenges for object detection. These challenges are even further amplified in rotational object detection tasks. Aiming to address these challenges, this paper proposes a decoupled feature mining rotational detector based on proposal enhancement (PDMDet). First, a single-stage detector is employed to replace the region proposal network of the two-stage detector, generating high-quality proposals to reduce background redundancy. Second, self-attention is applied within the same feature dimensions and cross-attention across different dimensions, aiming to enhance intradimensional features and fuse interdimensional features, thereby improving the capability of the detector to identify objects of varying sizes. Finally, recognizing that classification and oriented bounding box regression tasks have different feature sensitivities, this paper proposes a decoupled feature refinement strategy that processes the two tasks separately. Experiment results demonstrate that PDMDet achieves single-scale mAP scores of 78.37%, 72.35%, and 98.60% on DOTA-v1.0, DOTA-v1.5, and HRSC2016 datasets, respectively, outperforming existing algorithms in terms of detection accuracy and demonstrating strong competitiveness in complex rotational object detection scenarios.
备注/Memo
收稿日期:2024-10-24。
基金项目:国家自然科学基金项目(82374621).
作者简介:赵振博,硕士研究生,主要研究方向为深度学习、旋转目标检测。E-mail:zhao_zhenbo@hrbeu.edu.cn。;付天怡,博士研究生,主要研究方向为深度学习、计算机视觉。E-mail:futianyi@hrbeu.edu.cn。;董红斌,教授,博士生导师,中国计算机学会高级会员,主要研究方向为多智能体系统、机器学习。主持和完成国家自然科学基金项目、工信部基础研究项目、黑龙江省自然科学基金项目,荣获黑龙江省高校科学技术奖和黑龙江省优秀高等教育科学成果奖。发表学术论文 90 余篇,主编教材 2 部。E-mail:donghongbin@hrbeu.edu.cn。
通讯作者:董红斌. E-mail:donghongbin@hrbeu.edu.cn
更新日期/Last Update:
2025-09-05