[1]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报编辑部,2015,10(5):769-774.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10(5):769-774.[doi:10.11992/tis.201410010]
点击复制

RGB和HSI颜色空间的一种改进的阴影消除算法(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年5期
页码:
769-774
栏目:
出版日期:
2015-10-25

文章信息/Info

Title:
An improved shadow removal algorithm based on RGB and HSI color spaces
作者:
韩延彬12 郭晓鹏1 魏延文12 李恒建12
1. 济南大学 信息科学与工程学院, 山东 济南 250022;
2. 山东省网络环境智能计算技术重点实验室, 山东 济南 250022
Author(s):
HAN Yanbin12 GUO Xiaopeng1 WEI Yanwen12 LI Hengjian12
1. School of Information Science and Engineering, University of Jinan, Jinan 250022, China;
2. Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan 250022, China
关键词:
目标检测阴影消除颜色空间孔洞现象视频分析
Keywords:
target detectionshadow removalcolor spacehole phenomenonvideo analysis
分类号:
TP391
DOI:
10.11992/tis.201410010
文献标志码:
A
摘要:
在智能视频监控中,运动目标的准确提取至关重要。现有的运动目标检测算法虽然很多,但是阴影去除效果都不甚理想,因此提出了一种基于RGB和HSI颜色空间的阴影消除改进算法。该算法在分析视频中像素点被阴影覆盖和未被阴影覆盖时色调的近似一致性和亮度值成线性关系的基础上,利用2个颜色空间中组成颜色的各分量值在该颜色中所占的比例和亮度的相对变化率,实现运动目标的阴影消除。实验表明,该算法去除阴影的效果优于采用(r, g, I)颜色空间阴影去除算法,且能有效弥补运动目标孔洞的现象,是对运动目标检测算法的补充。
Abstract:
It is critical to exactly extract moving targets in intelligent video surveillance. There are many moving target detection algorithms, but for all the effects of shadow elimination are not ideal. In order to remove the shadow, an improved shadow removal algorithm based on RGB and HSI color spaces is presented. The analysis of the pixels in videoes shows that the hue is approximately consistent before and after the pixels are shaded, and there exists a linear relation between this approximate consistency and the value of luminance. On this basis, by utilizing the proportion of each color component in the color spaces and the relative change rates of brightness, the shadow of a moving object can be removed. The experimental results show that the shadow removal effect of this algorithm is better than that of the algorithm with (r, g, I) color space. In addition, it can also cope with holes in moving targets and is a supplement to the moving object detection algorithm.

参考文献/References:

[1] MARTEL-BRISSON N, ZACCARIN A. Moving cast shadow detection from a Gaussian mixture shadow model[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005:643-648.
[2] WANG Yang, LOE K F, WU Jiankang. A dynamic conditional random field model for foreground and shadow segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2):279-289.
[3] PORIKLI F, THOMTON J. Shadow flow:A recursive method to learn moving cast shadows[C]//Proceedings of Tenth IEEE International Conference on Computer Vision. Beijing, China, 2005:891-898.
[4] 褚一平, 叶修梓, 黄叶珏,等. 融合时空信息的前景/阴影视频分割算法[J]. 模式识别与人工智能, 2008, 21(4):546-550. CHU Yiping, YE Xiuzi, HUANG Yejue, et al. A spatiotemporal algorithm for video foreground and shadow segmentation[J]. Pattern Recognition and Artificial Intelligence, 2008, 21(4):546-550.
[5] 王彬, 冯远静, 郭海峰, 等. 交通场景中车辆的运动检测与阴影消除[J]. 中国图象图形学报, 2012, 17(11):1391-1399.WANG Bin, FENG Yuanjing, GUO Haifeng, et al. Adaptive background updating and shadow detection in traffic scenes[J]. Journal of Image and Graphics, 2012, 17(11):1391-1399.
[6] SALVADOR E, CAVALLARO A, EBRAHIMI T. Cast shadow segmentation using invariant color features[J]. Computer Vision and Image Understanding, 2004, 95(2):238-259.
[7] 董蓉, 李勃, 陈启美. 路况视频中HSV彩色不变量阴影检测法研究与改进[J]. 中国图象图形学报, 2009, 14(12):2483-2487. DONG Rong, LI Bo, CHEN Qimei. Research and improvement on shadow detection in expressway videos using HSV color model[J]. Journal of Image and Graphics, 2009, 14(12):2483-2487.
[8] KUMAR P, SENGUPTA K, LEE A. A comparative study of different color spaces for foreground and shadow detection for traffic monitoring system[C]//Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems. Washington DC, USA, 2002:100-105.
[9] LEONE A, DISTANTE C. Shadow detection for moving objects based on texture analysis[J]. Pattern Recognition, 2007, 40(4):1222-1233.
[10] 万峻甫, 刘建伟, 向怀坤, 等. 交通视频序列阴影检测算法研究[J]. 中国图象图形学报, 2008, 13(3):467-471.WAN Junfu, LIU Jianwei, XIANG Huaikun, et al. Research on shadow detection in grayscale video sequence for traffic images[J]. Journal of Image and Graphics, 2008, 13(3):467-471.
[11] 肖梅, 韩崇昭. 室内视频中基于边缘的运动阴影去除算法[J]. 模式识别与人工智能, 2006, 19(5):640-644.XIAO Mei, HAN Chongzhao. Edge-based moving shadow removal algorithm for indoor video sequence[J]. Pattern Recognition and Artificial Intelligence, 2006, 19(5):640-644.
[12] 柏柯嘉, 刘伟铭, 汤义. 基于Gabor小波和颜色模型的阴影检测算法[J]. 华南理工大学学报:自然科学版. 2009, 37(1):64-68.BAI Kejia, LIU Weimim, TANG Yi. Shadow detection algorithm based on Gabor wavelet and color model[J]. Journal of South China University of Technology:Natural Science Edition, 2009, 37(1):64-68.
[13] 郭利生, 郭立, 焦荣惠, 等. 一种基于运动阴影的目标检测算法[J]. 模式识别与人工智能, 2007, 20(2):180-184. GUO Lisheng, GUO Li, JIAO Ronghui, et al. An object detection algorithm based on moving shadow[J]. Pattern Recognition and Artificial Intelligence, 2007, 20(2):180-184.
[14] 查宇飞, 楚瀛, 王勋, 等. 一种基于Boosting判别模型的运动阴影检测方法[J]. 计算机学报, 2007, 30(8):1295-1301.ZHA Yufei, CHU Ying, WANG Xun, et al. A boosting discriminative model for moving cast shadow detection[J]. Chinese Journal of Computers, 2007, 30(8):1295-1301.
[15] GALLEGO J, PARDÀS M, HARO G. Enhanced foreground segmentation and tracking combining Bayesian background, shadow and foreground modeling[J]. Pattern Recognition Letters, 2012, 33(12):1558-1568.
[16] SONG Kaitai, TAI Jenchao. Image-based traffic monitoring with shadow suppression[J]. Proceedings of the IEEE, 2007, 95(2):413-426.
[17] JACQUES C S, JUNG C R, MUSSE S R. Background subtraction and shadow detection in grayscale video sequences[C]//Proceedings of the IEEE International Conference on Computer Graphics and Image Processing. Natal, Brazil, 2005:189-196.
[18] LI Jingping, QIN Min, XIA Yingjie, et al. Remarks on a novel statistical histogram-Average scene cumulative histogram[C]//IEEE International Conference on Granular Computing (GrC 2012). Hangzhou, China, 2012:310-314.
[19] 王真, 李金屏, 刘林, 等. 利用多颜色信息融合的自适应肤色建模[J]. 计算机工程与应用, 2011, 47(30):210-214.WANG Zhen, LI Jinping, LIU Lin, et al. Adaptive shin color modeling based on color information fusion[J]. Computer Engineering and Applications, 2011, 47(30):210-214.
[20] 刘林, 李金屏, 王真. 基于多颜色空间和累计场均直方图的视频场景分类[J]. 中国体视学与图像分析, 2011, 16(1):67-74.LIU Lin, LI Jinping, WANG Zhen. Video scene classification based on multiple color space and average scene histogram[J]. Chinese Journal of Stereology and Image Analysis, 2011, 16(1):67-74.
[21] 张中方, 李金屏, 拜佩. 基于多颜色空间融合的移动目标检测算法[J]. 济南大学学报:自然科学版, 2011, 25(2):191-195.ZHANG Zhongfang, LI Jinping, BAI Pei. Mobile object detection algorithm based on information fusion of multiple color spaces[J]. Journal of University of Jinan:Science and Technology, 2011, 25(2):191-195.
[22] WNAG Hanzi, SUTER D. A re-evaluation of mixture of Gaussian background modeling[C]//IEEE International Conference on Acoustics, Speech, and Signal Proceedings. Philadelphia, USA, 2005:1017-1020.
[23] 陈焕钟, 李榕, 程剑光. 基于混合高斯模型的运动目标检测[J]. 激光杂志, 2009, 3(4):32-33.CHEN Huanzhong, LI Rong, CHENG Jianguang. Moving objects detection based on Gaussian mixture models[J]. Laser Journal, 2009, 3(4):32-33.
[24] WANG Hanzi, DAVID S. A consensus-based method for tracking:modelling background scenario and foreground appearance[J]. Pattern Recognition, 2007, 40(3):1091-1105.
[25] ZENG Huanglin, WANG Zhenya. A new algorithm of an improved detection of moving vehicles[M]//Advances in Swarm Intelligence. Berlin/Heidelberg:Springer, 2010:688-693.
[26] JIANG Caixia, WARD M O. Shadow identification[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Champaign, USA, 1992:606-612.

相似文献/References:

[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报编辑部,2012,7(01):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7(5):61.
[2]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报编辑部,2013,8(02):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8(5):149.[doi:10.3969/j.issn.1673-4785.201212038]
[3]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报编辑部,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11(5):117.[doi:10.11992/tis.201505037]
[4]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报编辑部,2018,13(03):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13(5):366.[doi:10.11992/tis.201706040]
[5]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报编辑部,2018,13(06):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13(5):967.[doi:10.11992/tis.201801025]
[6]宁欣,李卫军,田伟娟,等.一种自适应模板更新的判别式KCF跟踪方法[J].智能系统学报编辑部,2019,14(01):121.[doi:10.11992/tis.201806038]
 NING Xin,LI Weijun,TIAN Weijuan,et al.Adaptive template update of discriminant KCF for visual tracking[J].CAAI Transactions on Intelligent Systems,2019,14(5):121.[doi:10.11992/tis.201806038]
[7]伍鹏瑛,张建明,彭建,等.多层卷积特征的真实场景下行人检测研究[J].智能系统学报编辑部,2019,14(02):306.[doi:10.11992/tis.201710019]
 WU Pengying,ZHANG Jianming,PENG Jian,et al.Research on pedestrian detection based on multi-layer convolution feature in real scene[J].CAAI Transactions on Intelligent Systems,2019,14(5):306.[doi:10.11992/tis.201710019]
[8]刘召,张黎明,耿美晓,等.基于改进的Faster R-CNN高压线缆目标检测方法[J].智能系统学报编辑部,2019,14(04):627.[doi:10.11992/tis.201905026]
 LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2019,14(5):627.[doi:10.11992/tis.201905026]

备注/Memo

备注/Memo:
收稿日期:2014-10-08;改回日期:。
基金项目:国家自然科学基金资助项目(61103117,61303199);山东省科技发展计划(2013YD01043);山东省高校科研计划项目(J12LN19,J14LN15).
作者简介:韩延彬,男,1979年生,副教授,中国计算机学会多值逻辑与模糊逻辑专委会委员,中国人工智能学会机器学习专业委员会通讯委员,主要研究方向为模式识别、计算智能。主持和参与国家和省部级项目多项,发表学术论文10余篇,其中被SCI、EI收录10篇;郭晓鹏,男,1992年生,硕士研究生,主要研究方向为模式识别、计算机视觉;魏延文,女,1985年生,硕士,主要研究方向为模式识别、计算机视觉;李恒建,男,1980年生,副教授,博士,中国计算机学会多值逻辑与模糊逻辑专委会委员,主要研究方向为模式识别、图像处理。主持和参与国家和省部级项目多项,发表学术论文10余篇,其中SCI、EI收录10篇。
通讯作者:韩延彬.E-mail:ise_hanyb@ujn.edu.cn.
更新日期/Last Update: 2015-11-16