[1]王亚茹,杨春旺,屈卓,等.双线性特征融合和门控循环单元质量聚合的图像质量评价[J].智能系统学报,2025,20(4):946-957.[doi:10.11992/tis.202407028]
WANG Yaru,YANG Chunwang,QU Zhuo,et al.Image quality assessment based on bilinear feature fusion and gate recurrent unit quality polymerization[J].CAAI Transactions on Intelligent Systems,2025,20(4):946-957.[doi:10.11992/tis.202407028]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
946-957
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Image quality assessment based on bilinear feature fusion and gate recurrent unit quality polymerization
- 作者:
-
王亚茹, 杨春旺, 屈卓, 赵顺, 张诗吟, 翟永杰
-
华北电力大学 自动化系, 河北 保定 071003
- Author(s):
-
WANG Yaru, YANG Chunwang, QU Zhuo, ZHAO Shun, ZHANG Shiyin, ZHAI Yongjie
-
Department of Automation, North China Electric Power University, Baoding 071003, China
-
- 关键词:
-
深度学习; 图像质量; 双线性池化; 门控循环单元; 可变形卷积; 特征提取; 特征选择; 特征融合
- Keywords:
-
deep learning; image quality; bilinear pooling; gate recurrent unit; deformable convolution; feature extraction; feature selection; features fusion
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202407028
- 文献标志码:
-
2025-2-21
- 摘要:
-
目前图像质量评价方法存在特征融合方式简单、质量信息提取和利用不充分以及忽略图像不同区域间相关性的问题,本文提出双线性特征融合和门控循环单元(gate recurrent unit, GRU)质量聚合的图像质量评价方法。提取图像的全局和局部特征,并对局部特征进行基于可变形卷积的筛选操作,在语义和上下文信息的引导作用下,滤除与失真无关的信息;构建双线性特征融合模块,加强全局-局部特征的信息交互,捕捉图像质量在空间关系和上下文信息上的变化;构建基于GRU的质量聚合模块,将逐图像块质量预测和全局依赖性建模相结合,动态调整各图像块的权重比例,最后通过聚合各图像块的质量信息生成整张图像的质量分数。在不同失真类型、不同场景的CSIQ、TID2013和PIPAL数据集上,本文方法的皮尔逊线性相关系数和斯皮尔曼等级相关系数均为最优值,尤其在PIPAL数据集中,相比于次优方法,皮尔逊线性相关系数提高了3.9%,斯皮尔曼等级相关系数提高了3.1%。
- Abstract:
-
Current image quality assessment methods suffer from simple feature fusion strategies, insufficient extraction and utilization of quality information, and neglect of the correlation between different image regions. This paper proposes an image quality assessment method based on bilinear feature fusion and gate recurrent unit (GRU) quality aggregation. We extract global and local features of images and perform selection operations on local features based on deformable convolution. Under the guidance of semantic and contextual information, information unrelated to distortion is filtered out. A bilinear feature fusion module is constructed to enhance the interaction between global and local features, capturing changes in image quality in terms of spatial relationships and contextual information. A quality aggregation module based on GRU is constructed, combining block-wise quality prediction and global dependency modeling. This dynamically adjusts the weight proportion of each image block, ultimately aggregating the quality information of all blocks to generate a quality score for the entire image. For the CSIQ, TID2013, and PIPAL datasets across different distortion types and various scenarios, the proposed method achieved optimal Pearson linear cor-relation coefficient (PLCC) and Spearman rank-order correlation coefficient (SROCC) metrics. Notably, on the PIPAL dataset, the PLCC improved by 3.9% and the SROCC improved by 3.1% compared with the second-best method.
备注/Memo
收稿日期:2024-7-24。
基金项目:国家自然科学基金青年科学基金项目(62303184);国家自然科学基金联合基金项目重点支持项目(U21A20486);国家自然科学基金面上项目(62373151);河北省自然科学基金青年科学基金项目(2024502006);中央高校基本科研业务费专项(2023JC006, 2024MS136, 2024MS138).
作者简介:王亚茹,博士,讲师,主要研究方向为模式识别与计算机视觉、数据挖掘和电力视觉。发表学术论文10余篇。E-mail:wangyaru@ncepu.edu.cn;杨春旺,硕士研究生,主要研究方向为图像质量评价。E-mail:2312661795@qq.com;张诗吟,讲师,博士,主要研究方向为计算机视觉和图像处理。发表学术论文5篇。E-mail:shiyinzhang@ncepu.edu.cn。
通讯作者:张诗吟. E-mail:shiyinzhang@ncepu.edu.cn
更新日期/Last Update:
1900-01-01