[1]缪宛谕,苟光磊,钟声,等.多级决策优化关系网络的小样本学习方法[J].智能系统学报,2025,20(4):882-893.[doi:10.11992/tis.202406016]
MIAO Wanyu,GOU Guanglei,ZHONG Sheng,et al.Multi-level decision optimization in relational networks for few-shot learning method[J].CAAI Transactions on Intelligent Systems,2025,20(4):882-893.[doi:10.11992/tis.202406016]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
882-893
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Multi-level decision optimization in relational networks for few-shot learning method
- 作者:
-
缪宛谕, 苟光磊, 钟声, 白瑞峰, 文浪
-
重庆理工大学 计算机科学与工程学院, 重庆 400054
- Author(s):
-
MIAO Wanyu, GOU Guanglei, ZHONG Sheng, BAI Ruifeng, WEN Lang
-
College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
-
- 关键词:
-
小样本学习; 深度学习; 决策理论; 图像分类; 关系网络; 不确定性分析; 特征提取; 粗糙集理论
- Keywords:
-
few-shot learning; deep learning; decision theory; image classification; relation network; uncertainty analysis; feature extraction; rough set theory
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202406016
- 文献标志码:
-
2025-2-21
- 摘要:
-
针对小样本学习中数据稀缺性的问题以及传统二支决策方法仅提供接受或拒绝两种选择的局限性,本研究提出一种多级决策优化的小样本学习方法。提出多粒度特征提取模块对样本进行处理,构建具有不同粒度的特征层来获取不同感受野的语义信息,从而实现精确决策;提出多分支自适应特征细化模块来提升局部与全局的关键区域特征表示;通过关系网络计算获取各个尺度参数,构建恰当的相似度度量矩阵,并将其输入到提出的多级决策优化模块中,使得模型能够根据不同粒度层的特征自适应地调整决策中的不确定区域。通过在MiniImageNet和TieredImageNet两个公开数据集上进行实验验证,分类准确率均有一定提升,实验结果验证了本方法的有效性。
- Abstract:
-
Addressing the issues of data scarcity in few-shot learning and the limitations of traditional binary decision methods that only offer accept or reject options, this study proposes a multi-level decision optimization approach for few-shot learning. Initially, a multi-granularity feature extraction module processes samples and constructs feature layers of different granularities to capture semantic information from various receptive fields, so as to make decisions precisely. Subsequently, a multi-branch adaptive feature refinement module is introduced to enhance the representation of key features in both local and global regions. By computing the parameters at various scales through relational networks, we construct an appropriate similarity matrix and input it into the proposed multi-level decision optimization module. This enables the model to adaptively adjust the uncertain regions in decision making based on features at different granularity levels. Finally, experimental validation on the MiniImageNet and TieredImageNet public datasets shows a significant improvement in classification accuracy, confirming effectiveness of this method.
备注/Memo
收稿日期:2024-6-11。
基金项目:国家自然科学基金项目(62141201);重庆市教委科学技术研究项目(KJZD-M202201102).
作者简介:缪宛谕,硕士研究生,主要研究方向为小样本学习、三支决策。E-mail:mwyy1007@163.com。;苟光磊,讲师,博士,主要研究方向为粗糙集理论和人工智能。主持重庆市科委基础科学与前沿技术研究项目、重庆市教委科学技术研究项目等科研项目 5 项,获发明专利授权3 项,发表学术论文 20 余篇,出版专著 1 部、教材 2 部。 E-mail:ggl@cqut.edu.cn。;钟声,硕士研究生,主要研究方向为三支决策、目标检测。E-mail:ferry@stu.cqut.edu.cn。
通讯作者:苟光磊. E-mail:ggl@cqut.edu.cn
更新日期/Last Update:
1900-01-01