[1]缪宛谕,苟光磊,钟声,等.多级决策优化关系网络的小样本学习方法[J].智能系统学报,2025,20(4):882-893.[doi:10.11992/tis.202406016]
 MIAO Wanyu,GOU Guanglei,ZHONG Sheng,et al.Multi-level decision optimization in relational networks for few-shot learning method[J].CAAI Transactions on Intelligent Systems,2025,20(4):882-893.[doi:10.11992/tis.202406016]
点击复制

多级决策优化关系网络的小样本学习方法

参考文献/References:
[1] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[2] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[3] HINTON G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE signal processing magazine, 2012, 29(6): 82-97.
[4] TAYE M M. Understanding of machine learning with deep learning: architectures, workflow, applications and future directions[J]. Computers, 2023, 12(5): 91.
[5] LI Feifei, FERGUS R, PERONA P. One-shot learning of object categories[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(4): 594-611.
[6] QI Guojun, LUO Jiebo. Small data challenges in big data era: a survey of recent progress on unsupervised and semi-supervised methods[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(4): 2168-2187.
[7] SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[EB/OL]. (2017-03-15)[2024-06-11]. https://arxiv.org/abs/1703.05175v2.
[8] HUANG Huaxing, ZHANG Junjie, ZHANG Jian, et al. PTN: A poisson transfer network for semi-supervised few-shot learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 1602-1609.
[9] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
[10] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: relation network for few-shot learning[EB/OL]. (2017-11-16)[20224-06-11]. https://arxiv.org/abs/1711.06025v2.
[11] ZHENG Wenfeng, TIAN Xia, YANG Bo, et al. A few shot classification methods based on multiscale relational networks[J]. Applied sciences, 2022, 12(8): 4059.
[12] 毕晓君, 毛亚菲. 基于监督对比学习的小样本甲骨文字识别[J]. 智能系统学报, 2024, 19(1): 106-113.
BI Xiaojun, MAO Yafei. Few-shot oracle bone character recognition based on supervised contrastive learning[J]. CAAI transactions on intelligent systems, 2024, 19(1): 106-113.
[13] 姚一豫, 祁建军, 魏玲. 基于三支决策的形式概念分析、粗糙集与粒计算[J]. 西北大学学报(自然科学版), 2018, 48(4): 477-487.
YAO Yiyu, QI Jianjun, WEI Ling. Formal concept analysis, rough set analysis and granular computing based on three-way decisions[J]. Journal of Northwest University (natural science edition), 2018, 48(4): 477-487.
[14] QIAN Yuhua, ZHANG Hu, SANG Yanli, et al. Multigranulation decision-theoretic rough sets[J]. International journal of approximate reasoning, 2014, 55(1): 225-237.
[15] SONG Yisheng, WANG Ting, CAI Puyu, et al. A comprehensive survey of few-shot learning: evolution, applications, challenges, and opportunities[J]. ACM computing surveys, 2023, 55(13s): 1-40.
[16] 许栋, 杨关, 刘小明, 等. 基于自适应特征融合与转换的小样本图像分类[J]. 计算机工程与应用, 2022, 58(24): 223-232.
XU Dong, YANG Guan, LIU Xiaoming, et al. Few-shot learning image classification based on adaptive feature fusion and transformation[J]. Computer engineering and applications, 2022, 58(24): 223-232.
[17] WANG Yikai, XU Chengming, LIU Chen, et al. Instance credibility inference for few-shot learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 01285.
[18] MEHROTRA A, DUKKIPATI A. Generative adversarial residual pairwise networks for one shot learning[J]. (2017-03-23)[2024-06-11]. https://arxiv.org/abs/1703.08033.
[19] NAVEED H, ANWAR S, HAYAT M, et al. Survey: Image mixing and deleting for data augmentation[J]. Engineering applications of artificial intelligence, 2024, 131: 107791.
[20] 马岽奡, 唐娉, 赵理君, 等. 深度学习图像数据增广方法研究综述[J]. 中国图象图形学报, 2021, 26(3): 487-502.
MA Dongao, TANG Ping, ZHAO Lijun, et al. Review of data augmentation for image in deep learning[J]. Journal of image and graphics, 2021, 26(3): 487-502.
[21] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[EB/OL]. (2016-13)[2024-06-11]. https://arxiv.org/abs/1606.04080v2.
[22] LI Wenbin, WANG Lei, XU Jinglin, et al. Revisiting local descriptor based image-to-class measure for few-shot learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 00743.
[23] 周阳阳, 钱文彬, 王映龙, 等. 面向混合数据的代价敏感三支决策边界域分类方法[J]. 智能系统学报, 2022, 17(2): 411-419.
ZHOU Yangyang, QIAN Wenbin, WANG Yinglong, et al. Classification method of cost-sensitive three-way decision boundary region for hybrid data[J]. CAAI transactions on intelligent systems, 2022, 17(2): 411-419.
[24] 刘盾, 李天瑞, 杨新, 等. 三支决策-基于粗糙集与粒计算研究视角[J]. 智能系统学报, 2019, 14(6): 1111-1120.
LIU Dun, LI Tianrui, YANG Xin, et al. Three-way decisions: research perspectives for rough sets and granular computing[J]. CAAI transactions on intelligent systems, 2019, 14(6): 1111-1120.
[25] ATANASSOV K T. Intuitionistic fuzzy sets: theory and applications[M]. Heidelberg: Springer Nature, 1999.
[26] PEDRYCZ W. Shadowed sets: representing and processing fuzzy sets[J]. IEEE transactions on systems, man, and cybernetics Part B, Cybernetics, 1998, 28(1): 103-109.
[27] 苗夺谦, 张清华, 钱宇华, 等. 从人类智能到机器实现模型: 粒计算理论与方法[J]. 智能系统学报, 2016, 11(6): 743-757.
MIAO Duoqian, ZHANG Qinghua, QIAN Yuhua, et al. From human intelligence to machine implementation model: theories and applications based on granular computing[J]. CAAI transactions on intelligent systems, 2016, 11(6): 743-757.
[28] GUO Doudou, JIANG Chunmao, WU Peng. Three-way decision based on confidence level change in rough set[J]. International journal of approximate reasoning, 2022, 143: 57-77.
[29] YANG Dandan, DENG Tingquan, FUJITA H. Partial-overall dominance three-way decision models in interval-valued decision systems[J]. International journal of approximate reasoning, 2020, 126: 308-325.
[30] WANG Tianxing, LI Huaxiong, QIAN Yuhua, et al. A regret-based three-way decision model under interval type-2 fuzzy environment[J]. IEEE transactions on fuzzy systems, 2022, 30(1): 175-189.
[31] SAVCHENKO A V. Fast inference in convolutional neural networks based on sequential three-way decisions[J]. Information sciences, 2021, 560: 370-385.
[32] LI Huaxiong, ZHANG Libo, HUANG Bing, et al. Sequential three-way decision and granulation for cost-sensitive face recognition[J]. Knowledge-based systems, 2016, 91: 241-251.
[33] LI Zhaowen, ZHANG Pengfei, XIE Ningxin, et al. A novel three-way decision method in a hybrid information system with images and its application in medical diagnosis[J]. Engineering applications of artificial intelligence, 2020, 92: 103651.
[34] 张楠, 姜丽丽, 岳晓冬, 等. 效用三支决策模型[J]. 智能系统学报, 2016, 11(4): 459-468.
ZHANG Nan, JIANG Lili, YUE Xiaodong, et al. Utility-based three-way decisions model[J]. CAAI transactions on intelligent systems, 2016, 11(4): 459-468.
[35] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 7298594.
[36] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL]. (2017-09-05)[2024-04-10]. https://arxiv. org/abs/1709.01507v4.
[37] LIU Yanbin, LEE J, PARK M, et al. Learning to propagate labels: transductive propagation network for few-shot learning[EB/OL]. (2018-05-25)[2024-06-11]. https://arxiv.org/abs/1805.10002v5.
[38] CHEN Da, CHEN Yuefeng, LI Yuhong, et al. Self-supervised learning for few-shot image classification[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 1745-1749.
[39] 陈龙, 张建林, 彭昊, 等. 多尺度注意力与领域自适应的小样本图像识别[J]. 光电工程, 2023, 50(4): 66-80.
CHEN Long, ZHANG Jianlin, PENG Hao, et al. Few-shot image classification via multi-scale attention and domain adaptation[J]. Opto-electronic engineering, 2023, 50(4): 66-80.
[40] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[EB/OL]. (2017-03-09)[2024-06-11]. https://arxiv.org/abs/1703.03400v3.
[41] YU Zhongjie, RASCHKA S. Looking back to lower-level information in few-shot learning[J]. Information, 2020, 11(7): 345.
[42] 汪航, 田晟兆, 唐青, 等. 基于多尺度标签传播的小样本图像分类[J]. 计算机研究与发展, 2022, 59(7): 1486-1495.
WANG Hang, TIAN Shengzhao, TANG Qing, et al. Few-shot image classification based on multi-scale label propagation[J]. Journal of computer research and development, 2022, 59(7): 1486-1495.
[43] GAO Farong, LUO Xingsheng, YANG Zhangyi, et al. Label smoothing and task-adaptive loss function based on prototype network for few-shot learning[J]. Neural networks, 2022, 156: 39-48.
[44] JIA Xiao, SU Yuling, ZHAO Hong. Few-shot learning via relation network based on coarse-grained granulation[J]. Applied intelligence, 2023, 53(1): 996-1008.
[45] 吕佳, 曾梦瑶, 董保森. 双路径合作的原型矫正小样本分类模型[J]. 计算机科学与探索, 2024, 18(3): 693-706.
LYU Jia, ZENG Mengyao, DONG Baosen. Prototype rectification few-shot classification model with dual-path cooperation[J]. Journal of frontiers of computer science and technology, 2024, 18(3): 693-706.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[11]马岭,鲁越,蒋慧琴,等.基于小样本学习的LCD产品缺陷自动检测方法[J].智能系统学报,2020,15(3):560.[doi:10.11992/tis.201904020]
 MA Ling,LU Yue,JIANG Huiqin,et al.An automatic small sample learning-based detection method for LCD product defects[J].CAAI Transactions on Intelligent Systems,2020,15():560.[doi:10.11992/tis.201904020]
[12]周凯锐,刘鑫,景丽萍,等.概念驱动的小样本判别特征学习方法[J].智能系统学报,2023,18(1):162.[doi:10.11992/tis.202203061]
 ZHOU Kairui,LIU Xin,JING Liping,et al.Concept-driven discriminative feature learning for few-shot learning[J].CAAI Transactions on Intelligent Systems,2023,18():162.[doi:10.11992/tis.202203061]
[13]李小菲,苟光磊,韩岩奇,等.多尺度知识引导局部增强的小样本细粒度图像分类方法[J].智能系统学报,2024,19(5):1157.[doi:10.11992/tis.202309003]
 LI Xiaofei,GOU Guanglei,HAN Yanqi,et al.Multiscale knowledge-guided local enhancement method for few-shot fine-grained image classification[J].CAAI Transactions on Intelligent Systems,2024,19():1157.[doi:10.11992/tis.202309003]

备注/Memo

收稿日期:2024-6-11。
基金项目:国家自然科学基金项目(62141201);重庆市教委科学技术研究项目(KJZD-M202201102).
作者简介:缪宛谕,硕士研究生,主要研究方向为小样本学习、三支决策。E-mail:mwyy1007@163.com。;苟光磊,讲师,博士,主要研究方向为粗糙集理论和人工智能。主持重庆市科委基础科学与前沿技术研究项目、重庆市教委科学技术研究项目等科研项目 5 项,获发明专利授权3 项,发表学术论文 20 余篇,出版专著 1 部、教材 2 部。 E-mail:ggl@cqut.edu.cn。;钟声,硕士研究生,主要研究方向为三支决策、目标检测。E-mail:ferry@stu.cqut.edu.cn。
通讯作者:苟光磊. E-mail:ggl@cqut.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com