[1]周强,陈军,陶卿.基于L1-mask约束的对抗攻击优化方法[J].智能系统学报,2025,20(3):594-604.[doi:10.11992/tis.202405037]
ZHOU Qiang,CHEN Jun,TAO Qing.Adversarial attack optimization method based on L1-mask constraint[J].CAAI Transactions on Intelligent Systems,2025,20(3):594-604.[doi:10.11992/tis.202405037]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第3期
页码:
594-604
栏目:
学术论文—机器学习
出版日期:
2025-05-05
- Title:
-
Adversarial attack optimization method based on L1-mask constraint
- 作者:
-
周强, 陈军, 陶卿
-
陆军炮兵防空兵学院 信息工程系,安徽 合肥 230031
- Author(s):
-
ZHOU Qiang, CHEN Jun, TAO Qing
-
Department of Information Engineering, PLA Army Academy of Artillery and Air Defense, Hefei 230031, China
-
- 关键词:
-
对抗攻击; L1范数; 遮盖; 显著性; 不可察觉性; 迁移性; 稀疏; 约束
- Keywords:
-
adversarial attack; L1 norm; mask; saliency; imperceptibility; transferability; sparse; constraint
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.202405037
- 摘要:
-
当前的对抗攻击方法通常采用无穷范数或L2范数来度量距离,但在不可察觉性方面仍有提升空间。L1范数作为稀疏学习的常用度量方式,其在提高对抗样本的不可察觉性方面尚未被深入研究。为了解决这一问题,提出基于L1范数约束的对抗攻击方法,通过对特征进行差异化处理,将有限的扰动集中在更重要的特征上。此外,还提出了基于显著性分析的L1-mask约束方法,通过遮盖显著性较低的特征来提高攻击的针对性。这些改进不仅提高了对抗样本的不可察觉性,还减少了对抗样本对替代模型的过拟合风险,增强了对抗攻击的迁移性。在ImageNet-Compatible数据集上的实验结果表明:在保持相同黑盒攻击成功率的条件下,基于L1约束的对抗攻击方法不可察觉性指标FID(frechet inception distance)指标较无穷范数低约5.7%,而基于L1-mask约束的FID指标则低约9.5%。
- Abstract:
-
The existing adversarial attack methods generally utilize infinite or L2 norms to measure distance. However, these methods can be improved in terms of imperceptibility. Moreover, the L1 norm, as a conventionally employed metric method in sparse learning, has not been extensively studied in terms of improving the imperceptibility of adversarial samples. To address this research gap, an adversarial attack method based on the L1 norm constraint is proposed, and it focuses limited perturbations on more crucial features by performing feature differentiation processing. Additionally, an L1-mask constraint method based on saliency analysis is proposed to improve attack targeting by masking low-saliency features. The results reveal that these improvements enhance the imperceptibility of adversarial samples and reduce the risk of overfitting alternative models with adversarial samples, thereby enhancing the transferability of adversarial attacks. Experiments using the ImageNet compatible dataset reveal that the imperceptibility FID index of the L1-constrained adversarial attack methods is approximately 5.7% lower than that of the infinite norm while maintaining the same success rate for black box attacks. Conversely, the FID index of L1-mask-constrained adversarial attack methods is approximately 9.5% lower.
更新日期/Last Update:
1900-01-01