[1]刘晓光,李梅.基于深度学习的药物-靶标相互作用预测研究综述[J].智能系统学报,2024,19(3):494-524.[doi:10.11992/tis.202308024]
 LIU Xiaoguang,LI Mei.A survey of deep learning-based drug-target interaction prediction[J].CAAI Transactions on Intelligent Systems,2024,19(3):494-524.[doi:10.11992/tis.202308024]
点击复制

基于深度学习的药物-靶标相互作用预测研究综述

参考文献/References:
[1] BENJAMINE B. 药物研发基本原理[M]. 第四版. 白仁仁, 译. 北京: 科学出版社, 2021.
[2] ASHBURN T T, THOR K B. Drug repositioning: identifying and developing new uses for existing drugs[J]. Nature reviews drug discovery, 2004, 3(8): 673–683.
[3] ADASME M F, PARISI D, SVESHNIKOVA A, et al. Structure-based drug repositioning: potential and limits[J]. Seminars in cancer biology, 2021, 68: 192–198.
[4] PARK K. A review of computational drug repurposing[J]. Translational and clinical pharmacology, 2019, 27(2): 59–63.
[5] MOHS R C, GREIG N H. Drug discovery and development: role of basic biological research[J]. Alzheimer’s & dementia, 2017, 3(4): 651–657.
[6] KATO S, MOULDER S L, UENO N T, et al. Challenges and perspective of drug repurposing strategies in early phase clinical trials[J]. Oncoscience, 2015, 2(6): 576–580.
[7] 刘聪. 2021中国AI/计算制药产业报告: 药物发现篇[R]. 北京: 亿欧智库. 2021.
LIU Cong. 2021 China AI/computational pharmaceutical industey report: Drug discovery and development[R]. Beijing: EqualOcean Intelligence, 2021.
[8] MULLARD A. 2022 FDA approvals[J]. Nature reviews drug discovery, 2023, 22(2): 83–88.
[9] 翟永杰, 张智柏, 王亚茹. 基于改进TransGAN的零样本图像识别方法[J]. 智能系统学报, 2023, 18(2): 352–359
ZHAI Yongjie, ZHANG Zhibai, WANG Yaru. An image recognition method of zero-shot learning based on an improved TransGAN[J]. CAAI transactions on intelligent systems, 2023, 18(2): 352–359
[10] 陈斌, 朱晋宁. 双流增强融合网络微表情识别[J]. 智能系统学报, 2023, 18(2): 360–371
CHEN Bin, ZHU Jinning. Micro-expression recognition based on a dual-stream enhanced fusion network[J]. CAAI transactions on intelligent systems, 2023, 18(2): 360–371
[11] 亢洁, 刘威. 面向装修案例智能匹配的跨模态检索方法[J]. 智能系统学报, 2022, 17(4): 714–720
KANG Jie, LIU Wei. A crossmodal retrieval method for intelligent matching of decoration cases[J]. CAAI transactions on intelligent systems, 2022, 17(4): 714–720
[12] LEE S, KIM D. Deep learning based recommender system using cross convolutional filters[J]. Information sciences: an international journal, 2022, 592(C): 112–122.
[13] 马甜甜, 杨长春, 严鑫杰, 等. 融合知识图谱和轻量级图卷积网络推荐系统的研究[J]. 智能系统学报, 2022, 17(4): 721–727
MA Tiantian, YANG Changchun, YAN Xinjie, et al. Research on the fusion of knowledge graph and lightweight graph convolutional network recommendation system[J]. CAAI transactions on intelligent systems, 2022, 17(4): 721–727
[14] CHEN Xuxin, WANG Ximin, ZHANG Ke, et al. Recent advances and clinical applications of deep learning in medical image analysis[J]. Medical image analysis, 2022, 79: 102444.
[15] 曾煜妮. 面向药物-靶标相互作用预测的多特征学习方法[D]. 成都: 四川大学, 2021.
ZENG Yuni. Multi-feature learning approaches for drug-target interaction prediction[D]. Chengdu: Sichuan University, 2021.
[16] JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583–589.
[17] RANA M M, NGUYEN D D. Geometric graph learning with extended atom-types features for protein-ligand binding affinity prediction[EB/OL]. (2023–01–15)[2023–08–09]. http://arxiv.org/abs/2301.06194.
[18] MOESSER M A, KLEIN D K, BOYLES F, et al. Protein-ligand interaction graphs: learning from ligand-shaped 3D interaction graphs to improve binding affinity prediction[EB/OL]. (2022–03–07) [2023–08–09]. https://api.semanticscholar.org/CorpusID:247320144.
[19] SURULIANDI A, IDHAYA T, RAJA S P. Drug target interaction prediction using machine learning techniques-A review[C]// 2021 Tenth International Conference on Intelligent Computing and Information Systems. Cairo: IEEE.
[20] DHAKAL A, MCKAY C, TANNER J J, et al. Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions[J]. Briefings in bioinformatics, 2022, 23(1): bbab476.
[21] ABBASI K, RAZZAGHI P, POSO A, et al. Deep learning in drug target interaction prediction: current and future perspectives[J]. Current medicinal chemistry, 2021, 28(11): 2100–2113.
[22] SAMUEL C. Drug repositioning and indication discovery using description logics[D]. Cambridge: University of Cambridge, 2014.
[23] ACEBRóN-GARCíA-DE-EULATE M, BLUNDELL T L, VEDITHI S C. Strategies for drug target identification in Mycobacterium leprae[J]. Drug discovery today, 2021, 26(7): 1569–1573.
[24] TANOLI Z, SEEMAB U, SCHERER A, et al. Exploration of databases and methods supporting drug repurposing: a comprehensive survey[J]. Briefings in bioinformatics, 2021, 22(2): 1656–1678.
[25] WANG Chen, KURGAN L. Survey of similarity-based prediction of drug-protein interactions[J]. Current medicinal chemistry, 2020, 27(35): 5856–5886.
[26] LIM S, LU Y, CHO C Y, et al. A review on compound-protein interaction prediction methods: data, format, representation and model[J]. Computational and structural biotechnology journal, 2021, 19: 1541–1556.
[27] BAGHERIAN M, SABETI E, WANG Kai, et al. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper[J]. Briefings in bioinformatics, 2021, 22(1): 247–269.
[28] RU Xiaoqing, YE Xiucai, SAKURAI T, et al. Current status and future prospects of drug-target interaction prediction[J]. Briefings in functional genomics, 2021, 20(5): 312–322.
[29] NOSENGO N. New tricks for old drugs[J]. Nature, 2016, 534(7607): 314–316.
[30] GAUDELET T, DAY B, JAMASB A R, et al. Utilizing graph machine learning within drug discovery and development[J]. Briefings in bioinformatics, 2021, 22(6): bbab159.
[31] JIN Guangxu, WONG S T C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines[J]. Drug discovery today, 2014, 19(5): 637–644.
[32] PUSHPAKOM S, IORIO F, EYERS P A, et al. Drug repurposing: progress, challenges and recommendations[J]. Nature reviews drug discovery, 2019, 18(1): 41–58.
[33] SARDANA D, ZHU Cheng, ZHANG Minlu, et al. Drug repositioning for orphan diseases[J]. Briefings in bioinformatics, 2011, 12(4): 346–356.
[34] 李擎宇, 张孝昌, 王升启. 人工智能预测药物-靶标相互作用研究进展[J]. 中国药理学与毒理学杂志, 2022, 8(1): 1–10.
LI Qingyu, ZHANG Xiaochang, WANG Shengqi. Research progress in artificial intelligence for predicting drug-target interactions[J]. Chinese journal of pharmacology and toxicology, 2022, 8(1): 1–10.
[35] ZOU Yurong, WANG Ruihan, DU Meng, et al. Identifying protein-ligand interactions via a novel distance self-feedback biomolecular interaction network[J]. The journal of physical chemistry B, 2023, 127(4): 899–911.
[36] SHEN Chao, HU Ye, WANG Zhe, et al. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions[J]. Briefings in bioinformatics, 2021, 22(1): 497–514.
[37] BALLESTER P J, MITCHELL J B O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking[J]. Bioinformatics, 2010, 26(9): 1169–1175.
[38] HU Zhiqiang, LIU Wenfeng, ZHANG Chenbin, et al. SAM-DTA: a sequence-agnostic model for drug-target binding affinity prediction[J]. Briefings in bioinformatics, 2023, 24(1): bbac533.
[39] WEN Ming, ZHANG Zhimin, NIU Shaoyu, et al. Deep-learning-based drug-target interaction prediction[J]. Journal of proteome research, 2017, 16(4): 1401–1409.
[40] PAHIKKALA T, AIROLA A, PIETIL? S, et al. Toward more realistic drug-target interaction predictions[J]. Briefings in bioinformatics, 2015, 16(2): 325–337.
[41] RU Xiaoqing, YE Xiucai, SAKURAI T, et al. NerLTR-DTA: drug-target binding affinity prediction based on neighbor relationship and learning to rank[J]. Bioinformatics, 2022, 38(7): 1964–1971.
[42] PLIAKOS K, VENS C, TSOUMAKAS G. Predicting drug-target interactions with multi-label classification and label partitioning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2021, 18(4): 1596–1607.
[43] CHU Yanyi, SHAN Xiaoqi, CHEN Tianhang, et al. DTI-MLCD: predicting drug-target interactions using multi-label learning with community detection method[J]. Briefings in bioinformatics, 2021, 22(3): bbaa205.
[44] ZHENG Liangzhen, FAN Jingrong, MU Yuguang. OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction[J]. ACS omega, 2019, 4(14): 15956–15965.
[45] WANG D D, CHAN M T. Protein-ligand binding affinity prediction based on profiles of intermolecular contacts[J]. Computational and structural biotechnology journal, 2022, 20: 1088–1096.
[46] SáNCHEZ-CRUZ N, MEDINA-FRANCO J L, MESTRES J, et al. Extended connectivity interaction features: improving binding affinity prediction through chemical description[J]. Bioinformatics, 2021, 37(10): 1376–1382.
[47] KYRO G W, BRENT R I, BATISTA V S. HAC-net: a hybrid attention-based convolutional neural network for highly accurate protein-ligand binding affinity prediction[J]. Journal of chemical information and modeling, 2023, 63(7): 1947–1960.
[48] KWON Y, SHIN W H, KO J, et al. AK-score: accurate protein-ligand binding affinity prediction using an ensemble of 3D-convolutional neural networks[J]. International journal of molecular sciences, 2020, 21(22): 8424.
[49] LI Yanjun, REZAEI M A, LI Chenglong, et al. DeepAtom: a framework for protein-ligand binding affinity prediction[C]//2019 IEEE International Conference on Bioinformatics and Biomedicine. San Diego: IEEE, 2019: 303–310.
[50] WANG Yuxiao, QIU Zongzhao, JIAO Qihong, et al. Structure-based protein-drug affinity prediction with spatial attention mechanisms[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine. Houston: IEEE, 2021: 92–97.
[51] JIMéNEZ J, ?KALI? M, MARTíNEZ-ROSELL G, et al. Kdeep: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks[J]. Journal of chemical information and modeling, 2018, 58(2): 287–296.
[52] STEPNIEWSKA-DZIUBINSKA M M, ZIELENKIEWICZ P, SIEDLECKI P. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction[J]. Bioinformatics, 2018, 34(21): 3666–3674.
[53] WANG Yeji, WU Shuo, DUAN Yanwen, et al. A point cloud-based deep learning strategy for protein-ligand binding affinity prediction[J]. Briefings in bioinformatics, 2022, 23(1): bbab474.
[54] PANDEY M, RADAEVA M, MSLATI H, et al. Ligand binding prediction using protein structure graphs and residual graph attention networks[J]. Molecules, 2022, 27(16): 5114.
[55] JIANG Dejun, HSIEH C Y, WU Zhenxing, et al. InteractionGraphNet: a novel and efficient deep graph representation learning framework for accurate protein-ligand interaction predictions[J]. Journal of medicinal chemistry, 2021, 64(24): 18209–18232.
[56] VOLKOV M, TURK J A, DRIZARD N, et al. On the frustration to predict binding affinities from protein-ligand structures with deep neural networks[J]. Journal of medicinal chemistry, 2022, 65(11): 7946–7958.
[57] ZHOU Jingbo, LI Shuangli, HUANG Liang, et al. Distance-aware molecule graph attention network for drug-target binding affinity prediction[EB/OL]. (2020–12–17)[2023–08–19]. http://arxiv.org/abs/2012.09624.
[58] LI Shuangli, ZHOU Jingbo, XU Tong, et al. Structure-aware interactive graph neural networks for the prediction of protein-ligand binding affinity[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Virtual Event, Singapore: ACM, 2021: 975–985.
[59] LIM J, RYU S, PARK K, et al. Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation[J]. Journal of chemical information and modeling, 2019, 59(9): 3981–3988.
[60] MOON S, ZHUNG W, YANG S, et al. PIGNet: a physics-informed deep learning model toward generalized drug-target interaction predictions[J]. Chemical science, 2022, 13(13): 3661–3673.
[61] XIA Chunqiu, FENG Shihao, XIA Ying, et al. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network[J]. Briefings in bioinformatics, 2023, 24(1): bbac603.
[62] ZHANG Shuke, JIN Yanzhao, LIU Tianmeng, et al. SS-GNN: a simple-structured graph neural network for affinity prediction[J]. ACS omega, 2023, 8(25): 22496–22507.
[63] ZHANG Li, WANG Chunchun, CHEN Xing. Predicting drug-target binding affinity through molecule representation block based on multi-head attention and skip connection[J]. Briefings in bioinformatics, 2022, 23(6): bbac468.
[64] RIFAIOGLU A S, NALBAT E, ATALAY V, et al. DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations[J]. Chemical science, 2020, 11(9): 2531–2557.
[65] MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013–01–16)[2023–08–19]. http://arxiv.org/abs/1301.3781.
[66] HUANG Kexin, XIAO Cao, GLASS L M, et al. MolTrans: molecular interaction Transformer for drug-target interaction prediction[J]. Bioinformatics, 2021, 37(6): 830–836.
[67] KRENN M, H?SE F, NIGAM A, et al. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation[J]. Machine learning: science and technology, 2020, 1(4): 045024.
[68] NGUYEN T, LE Hang, QUINN T P, et al. GraphDTA: predicting drug-target binding affinity with graph neural networks[J]. Bioinformatics, 2021, 37(8): 1140–1147.
[69] KARIMI M, WU Di, WANG Zhangyang, et al. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks[J]. Bioinformatics, 2019, 35(18): 3329–3338.
[70] SHARMA A, LYONS J, DEHZANGI A, et al. A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition[J]. Journal of theoretical biology, 2013, 320: 41–46.
[71] SHEN Hongbin, CHOU Kuochen. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM[J]. Protein engineering, design & selection: PEDS, 2007, 20(11): 561–567.
[72] CHOU Kuochen. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes[J]. Bioinformatics, 2005, 21(1): 10–19.
[73] MAHMUD S M H, CHEN Wenyu, LIU Yongsheng, et al. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques[J]. Briefings in bioinformatics, 2021, 22(5): bbab046.
[74] WEE J, XIA Kelin. Forman persistent Ricci curvature (FPRC)-based machine learning models for protein-ligand binding affinity prediction[J]. Briefings in bioinformatics, 2021, 22(6): bbab136.
[75] MENG Zhenyu, XIA Kelin. Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction[J]. Science advances, 2021, 7(19): eabc5329.
[76] LIU Xiang, FENG Huitao, WU Jie, et al. Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction[J]. Briefings in bioinformatics, 2021, 22(5): bbab127.
[77] REDKAR S, MONDAL S, JOSEPH A, et al. A machine learning approach for Drug-target interaction prediction using wrapper feature selection and class balancing[J]. Molecular informatics, 2020, 39(5): e1900062.
[78] HE Tong, HEIDEMEYER M, BAN Fuqiang, et al. SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines[J]. Journal of cheminformatics, 2017, 9(1): 24.
[79] ZENG Xiangxiang, ZHU Siyi, HOU Yuan, et al. Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest[J]. Bioinformatics, 2020, 36(9): 2805–2812.
[80] CHEN Cheng, SHI Han, JIANG Zhiwen, et al. DNN-DTIs: improved drug-target interactions prediction using XGBoost feature selection and deep neural network[J]. Computers in biology and medicine, 2021, 136: 104676.
[81] LI Zhanchao, HUANG Menghua, ZHONG Wenqian, et al. Identification of drug-target interaction from interactome network with ‘guilt-by-association’ principle and topology features[J]. Bioinformatics, 2016, 32(7): 1057–1064.
[82] TANOORI B, JAHROMI M Z. Using drug-drug and protein-protein similarities as feature vector for drug-target binding prediction[J]. Chemometrics and intelligent laboratory systems, 2021, 217: 104405.
[83] TANOORI B, JAHROMI M Z, MANSOORI E G. Drug-target continuous binding affinity prediction using multiple sources of information[J]. Expert systems with applications, 2021, 186: 115810.
[84] CHEN Zhanheng, YOU Zhuhong, GUO Zhenhao, et al. Prediction of drug-target interactions from multi-molecular network based on deep walk embedding model[J]. Frontiers in bioengineering and biotechnology, 2020, 8: 338.
[85] XUAN Ping, CHEN Bingxu, ZHANG Tiangang, et al. Prediction of drug–target interactions based on network representation learning and ensemble learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2021, 18(6): 2671–2681.
[86] CHU Yanyi, KAUSHIK A C, WANG Xiangeng, et al. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features[J]. Briefings in bioinformatics, 2021, 22(1): 451–462.
[87] LIU Ran, LIU Xiang, WU Jie. Persistent path-spectral (PPS) based machine learning for protein-ligand binding affinity prediction[J]. Journal of chemical information and modeling, 2023, 63(3): 1066–1075.
[88] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. California: ACM, 2017: 6000–6010.
[89] WANG Xianfang, LIU Yifeng, LU Fan, et al. Dipeptide frequency of word frequency and graph convolutional networks for DTA prediction[J]. Frontiers in bioengineering and biotechnology, 2020, 8: 267.
[90] LIN Xuan. DeepGS: deep representation learning of graphs and sequences for drug-target binding affinity prediction[EB/OL]. (2020–03–31)[2023–08–19]. http://arxiv.org/abs/2003.13902.
[91] WANG Shudong, DU Zhenzhen, DING Mao, et al. LDCNN-DTI: a novel light deep convolutional neural network for drug-target interaction predictions[C]//2020 IEEE International Conference on Bioinformatics and Biomedicine. Seoul: IEEE, 2020: 1132–1136.
[92] AGYEMANG B, WU Weiping, KPIEBAAREH M Y, et al. Multi-view self-attention for interpretable drug-target interaction prediction[J]. Journal of biomedical informatics, 2020, 110: 103547.
[93] JIANG Mingjian, LI Zhen, ZHANG Shugang, et al. Drug-target affinity prediction using graph neural network and contact maps[J]. RSC advances, 2020, 10(35): 20701–20712.
[94] KAO Poyu, KAO Shumin, HUANG Nanlan, et al. Toward drug-target interaction prediction via ensemble modeling and transfer learning[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine. Houston: IEEE, 2021: 2384–2391.
[95] WU Yifan, GAO Min, ZENG Min, et al. BridgeDPI: a novel graph neural network for predicting drug-protein interactions[J]. Bioinformatics, 2022, 38(9): 2571–2578.
[96] 王红梅, 郭真俊, 张丽杰. 基于图神经网络的药物-靶标相互作用预测研究[J]. 长春工业大学学报, 2021, 42(4): 318–325
WANG Hongmei, GUO Zhenjun, ZHANG Lijie. Drug-target interaction prediction based on graph neural network[J]. Journal of Changchun university of technology, 2021, 42(4): 318–325
[97] CHEN Ruolan, XIA Feng, HU Bing, et al. Drug-target interactions prediction via deep collaborative filtering with multiembeddings[J]. Briefings in bioinformatics, 2022, 23(2): bbab520.
[98] CHEN Jiatao, ZHANG Liang, CHENG Ke, et al. Exploring multi-level mutual information for drug-target interaction prediction[C]//2020 IEEE International Conference on Bioinformatics and Biomedicine. Seoul: IEEE, 2020: 251–256.
[99] PENG Jiajie, WANG Yuxian, GUAN Jiaojiao, et al. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction[J]. Briefings in bioinformatics, 2021, 22(5): bbaa430.
[100] LI Yuhui, LIANG Wei, PENG Li, et al. Predicting drug-target interactions via dual-stream graph neural network[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022: 3204188. .
[101] ZHAO Chengshuai, LIU Shuai, HUANG Feng, et al. CSGNN: contrastive self-supervised graph neural network for molecular interaction prediction[C]//Proceeding of the 30th International Joint Conference on Artificial Intelligence. 2021: 3756–3763.
[102] ZENG Yuni, CHEN Xiangru, LUO Yujie, et al. Deep drug-target binding affinity prediction with multiple attention blocks[J]. Briefings in bioinformatics, 2021, 22(5): bbab117.
[103] ALEB N. A mutual attention model for drug target binding affinity prediction[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022, 19(6): 3224–3232.
[104] GAO K Y, FOKOUE A, LUO Heng, et al. Interpretable drug target prediction using deep neural representation[C]//Proceeding of the 27th International Joint Conference on Artificial Intelligence. Stockholm: AAAI Press, 2018: 3371–3377.
[105] ABBASI K, RAZZAGHI P, POSO A, et al. DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks[J]. Bioinformatics, 2020, 36(17): 4633–4642.
[106] KARIMI M, WU D, WANG Z, et al. Explainable deep relational networks for predicting compound-protein affinities and contacts[J]. Journal of chemical information and modeling, 2021, 61(1): 46–66.
[107] ZHAO Qichang, ZHAO Haochen, ZHENG Kai, et al. HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism[J]. Bioinformatics, 2022, 38(3): 655–662.
[108] CHEN Lifan, TAN Xiaoqin, WANG Dingyan, et al. TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments[J]. Bioinformatics, 2020, 36(16): 4406–4414.
[109] BAI Peizhen, MILJKOVI? F, JOHN B, et al. Interpretable bilinear attention network with domain adaptation improves drug-target prediction[J]. Nature machine intelligence, 2023, 5: 126–136.
[110] CHENG Zhongjian, ZHAO Qichang, LI Yaohang, et al. IIFDTI: predicting drug-target interactions through interactive and independent features based on attention mechanism[J]. Bioinformatics, 2022, 38(17): 4153–4161.
[111] ZHAO Qichang, DUAN Guihua, YANG Mengyun, et al. AttentionDTA: drug-target binding affinity prediction by sequence-based deep learning with attention mechanism[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2023, 20(2): 852–863.
[112] HUANG Lei, LIN Jiecong, LIU Rui, et al. CoaDTI: multi-modal co-attention based framework for drug-target interaction annotation[J]. Briefings in bioinformatics, 2022, 23(6): bbac446.
[113] WANG Tianyu, YANG Wenming, CHEN Jie, et al. ConformerDTI: local features coupling global representations for drug-target interaction prediction[C]//2022 IEEE International Conference on Bioinformatics and Biomedicine. Las Vegas: IEEE, 2022: 1227–1234.
[114] LI Fei, ZHANG Ziqiao, GUAN Jihong, et al. Effective drug-target interaction prediction with mutual interaction neural network[J]. Bioinformatics, 2022, 38(14): 3582–3589.
[115] MONTEIRO N R C, OLIVEIRA J L, ARRAIS J P. DTITR: end-to-end drug-target binding affinity prediction with transformers[J]. Computers in biology and medicine, 2022, 147: 105772.
[116] TSUBAKI M, TOMII K, JUN Sese. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences[J]. Bioinformatics, 2019, 35(2): 309–318.
[117] YANG Ziduo, ZHONG Weihe, ZHAO Lu, et al. ML-DTI: mutual learning mechanism for interpretable drug-target interaction prediction[J]. The journal of physical chemistry letters, 2021, 12(17): 4247–4261.
[118] CHENG Zhongjian, YAN Cheng, WU Fangxiang, et al. Drug-target interaction prediction using multi-head self-attention and graph attention network[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022, 19(4): 2208–2218.
[119] YUAN Weining, CHEN Guanxing, CHEN C Y C. FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction[J]. Briefings in bioinformatics, 2022, 23(1): bbab506.
[120] NGUYEN T M, NGUYEN T, LE T M, et al. GEFA: early fusion approach in drug-target affinity prediction[J]. IEEE/ACM trans comput biol bioinform, 2022, 19(2): 718–728.
[121] CHU Zhaoyang, HUANG Feng, FU Haitao, et al. Hierarchical graph representation learning for the prediction of drug-target binding affinity[J]. Information sciences: an international journal, 2022, 613(C): 507–523.
[122] ZHAO Tianyi, HU Yang, VALSDOTTIR L R, et al. Identifying drug-target interactions based on graph convolutional network and deep neural network[J]. Briefings in bioinformatics, 2021, 22(2): 2141–2150.
[123] FU Haitao, HUANG Feng, LIU Xuan, et al. MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks[J]. Bioinformatics, 2022, 38(2): 426–434.
[124] LI Chunyan, YAO Junfeng, WEI Wei, et al. Geometry-based molecular generation with deep constrained variational autoencoder[J]. IEEE transactions on neural networks and learning systems, 2024, 35(4): 4852–4861.
[125] LI Jiahan. Directed weight neural networks for protein structure representation learning[EB/OL]. (2022–01–28)[2023–08–19]. http://arxiv.org/abs/2201.13299.
[126] SON J, KIM D. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities[J]. PLoS One, 2021, 16(4): e0249404.
[127] SEO S, CHOI J, PARK S, et al. Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions[J]. BMC bioinformatics, 2021, 22(1): 542.
[128] CANG Zixuan, MU Lin, WEI Guowei. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening[J]. PLoS computational biology, 2018, 14(1): e1005929.
[129] NGUYEN D D, GAO Kaifu, WANG Menglun, et al. MathDL: mathematical deep learning for D3R grand challenge 4[J]. Journal of computer-aided molecular design, 2020, 34(2): 131–147.
[130] JIANG Peiran, CHI Ying, LI Xiaoshuang, et al. Molecular persistent spectral image (Mol-PSI) representation for machine learning models in drug design[J]. Briefings in bioinformatics, 2022, 23(1): bbab527.
[131] BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5–32.
[132] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The annals of statistics, 2001, 29(5): 1189–1232.
[133] 叶贵鑫, 张宇翔, 张成, 等. 基于图神经网络的OpenCL程序自动优化启发式方法[J]. 计算机研究与发展, 2023, 60(5): 1121–1135
YE Guixin, ZHANG Yuxiang, ZHANG Cheng, et al. Automatic optimization heuristics method for OpenCL program based on graph neural network[J]. Journal of computer research and development, 2023, 60(5): 1121–1135
[134] YI Yiqiang, WAN Xu, ZHAO Kangfei, et al. Predicting protein-ligand binding affinity with equivariant line graph network[EB/OL]. (2022–10–27)[2023–08–19]. http://arxiv.org/abs/2210.16098.
[135] CHEN Peng, SHEN Huimin, ZHANG Youzhi, et al. SGNet: sequence-based convolution and ligand graph network for protein binding affinity prediction[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2023, 20(5): 3257–3266.
[136] LI Xiaoshuang, LIU Xiang, LU Le, et al. Multiphysical graph neural network (MP-GNN) for COVID-19 drug design[J]. Briefings in bioinformatics, 2022, 23(4): bbac231.
[137] ZHAO Bowei, YOU Zhuhong, HU Lun, et al. A novel method to predict drug-target interactions based on large-scale graph representation learning[J]. Cancers, 2021, 13(9): 2111.
[138] SHEN Ying, ZHANG Yilin, YUAN Kaiqi, et al. A knowledge-enhanced multi-view framework for drug-target interaction prediction[J]. IEEE transactions on big data, 2022, 8(5): 1387–1398.
[139] YU Zhimiao, LU Jiarui, JIN Yuan, et al. KenDTI: an ensemble model for predicting drug-target interaction by integrating multi-source information[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2021, 18(4): 1305–1314.
[140] HINNERICHS T, HOEHNDORF R. DTI-Voodoo: machine learning over interaction networks and ontology-based background knowledge predicts drug-target interactions[J]. Bioinformatics, 2021, 37(24): 4835–4843.
[141] PU Yuqian, LI Jiawei, TANG Jijun, et al. DeepFusionDTA: drug-target binding affinity prediction with information fusion and hybrid deep-learning ensemble model[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022, 19(5): 2760–2769.
[142] CHEN Jiatao, ZHANG Liang, CHENG Ke, et al. Predicting drug-target interaction via self-supervised learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2023, 20(5): 2781–2789.
[143] JONES D, KIM H, ZHANG Xiaohua, et al. Improved protein-ligand binding affinity prediction with structure-based deep fusion inference[J]. Journal of chemical information and modeling, 2021, 61(4): 1583–1592.
[144] YELLA J K, GHANDIKOTA S K, JEGGA A G. GraMDTA: multimodal graph neural networks for predicting drug-target associations[C]//2022 IEEE International Conference on Bioinformatics and Biomedicine. Las Vegas: IEEE, 2022: 1957–1965.
[145] LI Qingyu, ZHANG Xiaochang, WU Lianlian, et al. PLA-MoRe: a protein-ligand binding affinity prediction model via comprehensive molecular representations[J]. Journal of chemical information and modeling, 2022, 62(18): 4380–4390.
[146] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine learning, 2006, 63(1): 3–42.
[147] KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 3149–3157.
[148] CHAN T F, GOLUB G H, LEVEQUE R J. Updating formulae and a pairwise algorithm for computing sample variances[C]//COMPSTAT 1982 5th Symposium held at Toulouse 1982. Heidelberg: Physica, 1982: 30–41.
[149] PISNER D A, SCHNYER D M. Support vector machine[M]//Machine Learning. Amsterdam: Elsevier, 2020: 101–121.
[150] SUN Chang, XUAN Ping, ZHANG Tiangang, et al. Graph convolutional autoencoder and generative adversarial network-based method for predicting drug-target interactions[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022, 19(1): 455–464.
[151] BAGHERIAN M, KIM R B, JIANG Cheng, et al. Coupled matrix-matrix and coupled tensor-matrix completion methods for predicting drug-target interactions[J]. Briefings in bioinformatics, 2021, 22(2): 2161–2171.
[152] LI Jin, WANG Jingru, LYU Hao, et al. IMCHGAN: inductive matrix completion with heterogeneous graph attention networks for drug-target interactions prediction[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022, 19(2): 655–665.
[153] WANG Shiming, LI Jie, WANG Yadong, et al. A neighborhood-based global network model to predict drug-target interactions[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2022, 19(4): 2017–2025.
[154] WANG Xiaoqi, YANG Yaning, LI Kenli, et al. BioERP: biomedical heterogeneous network-based self-supervised representation learning approach for entity relationship predictions[J]. Bioinformatics, 2021, 37(24): 4793–4800.
[155] ZENG Xiangxiang, ZHU Siyi, LU Weiqiang, et al. Target identification among known drugs by deep learning from heterogeneous networks[J]. Chemical science, 2020, 11(7): 1775–1797.
[156] SHANG Yifan, YE Xiucai, FUTAMURA Y, et al. Multiview network embedding for drug-target interactions prediction by consistent and complementary information preserving[J]. Briefings in bioinformatics, 2022, 23(3): bbac059.
[157] WAN Fangping, HONG Lixiang, XIAO An, et al. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions[J]. Bioinformatics, 2019, 35(1): 104–111.
[158] LUO Yunan, ZHAO Xinbin, ZHOU Jingtian, et al. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information[J]. Nature communications, 2017, 8(1): 573.
[159] ZHAO Lingling, WANG Junjie, PANG Long, et al. GANsDTA: predicting drug-target binding affinity using GANs[J]. Frontiers in genetics, 2020, 10: 1243.
[160] JIANG Lu, SUN Jiahao, WANG Yue, et al. Identifying drug-target interactions via heterogeneous graph attention networks combined with
相似文献/References:
[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(1):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4():1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(6):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3():476.
[3]徐玉如,庞永杰,甘?? 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1():9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(1):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1():38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(2):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1():16.
[6]秦裕林,朱新民,朱? 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(2):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1():11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(1):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2():1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(3):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(5):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2():20.
[10]王志良,杨?? 溢,杨?? 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(6):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4():521.[doi:10.3969/j.issn.1673-4785.2009.06.009]

备注/Memo

收稿日期:2023-08-19。
基金项目:国家自然科学基金项目(62272253, 62272252) ;中央高校基本科研专项.
作者简介:刘晓光,教授,博士,南开大学计算机学院副院长,主要研究方向为分布式系统、网络存储。主持国家和省部级科研项目 14项,获天津市教学成果奖2项。发表学术论文40余篇,E-mail:liuxg@nbjl.nankai.edu.cn;李梅,博士研究生,主要研究方向为图深度学习、知识图谱、深度学习在生物信息领域的应用。E-mail:limei-666@mail.nankai.edu.cn
通讯作者:刘晓光. E-mail:liuxg@nbjl.nankai.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com