[1]程鹏超,杜军平,薛哲.基于多路交叉的用户金融行为预测[J].智能系统学报,2021,16(2):378-384.[doi:10.11992/tis.202006054]
 CHENG Pengchao,DU Junping,XUE Zhe.Prediction of user financial behavior based on multi-way crossing[J].CAAI Transactions on Intelligent Systems,2021,16(2):378-384.[doi:10.11992/tis.202006054]
点击复制

基于多路交叉的用户金融行为预测

参考文献/References:
[1] MAIA M, HANDSCHUH S, FREITAS A,et al. WWW’18 open challenge:financial opinion mining and question answering[C]//Companion Proceedings of the Web Conference 2018. Lyon, France:International World Wide Web Conferences Steering Committee, 2018:1941-1942.
[2] SHI Hongyu, CHEN Ling, XU Zhenxing, et al. Personalized location recommendation using mobile phone usage information[J]. Applied intelligence, 2019, 49(10):3694-3707.
[3] CHEN Jiehao, LI Xueyi, ZHAO Ziqian, et a. A CTR prediction method based on feature engineering and online learning[C]//Proceedings of the 17th International Symposium on Communications and Information Technologies. Cairns, Australia, 2017:1-6.
[4] ZHAO Xibin, WANG Nan, ZHANG Yubo, et al. Beyond pairwise matching:person reidentification via high-order relevance learning[J]. IEEE transactions on neural networks and learning systems, 2018, 29(8):3701-3714.
[5] HAO Tong, WANG Qian, WU Dan, et al. Adaptive recommendation for photo pose via deep learning[J]. Multimedia tools and applications, 2018, 77(17):22173-22184.
[6] RYU G A, NASRIDINOV A, RAH H, et al. Forecasts of the amount purchase pork meat by using structured and unstructured big data[J]. Agriculture, 2020, 10(1):1-14.
[7] 曾宪宇, 刘淇, 赵洪科, 等. 用户在线购买预测:一种基于用户操作序列和选择模型的方法[J]. 计算机研究与发展, 2016, 53(8):1673-1683
ZENG Xianyu, LIU Qi, ZHAO Hongke, et al. Online consumptions prediction via modeling user behaviors and choices[J]. Journal of computer research and development, 2016, 53(8):1673-1683
[8] LIU Xiaoman, LI Jing. Using support vector machine for online purchase predication[C]//Proceedings of 2016 International Conference on Logistics, Informatics and Service Sciences (LISS). Sydney, Australia, 2016:1-6.
[9] 祝歆, 刘潇蔓, 陈树广, 等. 基于机器学习融合算法的网络购买行为预测研究[J]. 统计与信息论坛, 2017, 32(12):94-100
ZHU Xin, LIU Xiaoman, CHEN Shuguang, et al. Research on network purchase behavior prediction based on machine learning fusion algorithm[J]. Statistics and information forum, 2017, 32(12):94-100
[10] 杜刚, 黄震宇. 大数据环境下客户购买行为预测[J]. 管理现代化, 2015, 35(1):40-42
DU Gang, HUANG Zhenyu. Customer purchasing behavior prediction under the environment of big data[J]. Modernization of management, 2015, 35(1):40-42
[11] 李美其, 齐佳音. 基于购买行为及评论行为的用户购买预测研究[J]. 北京邮电大学学报(社会科学版), 2016, 18(4):18-25
LI Meiqi, QI Jiayin. Customer purchase prediction based on buying behavior and comment behavior[J]. Journal of Beijing University of Posts and Telecommunications (social sciences edition), 2016, 18(4):18-25
[12] 张春莲. 客户购买行为的BG/NBD预测模型及其应用研究[D]. 哈尔滨:哈尔滨工业大学, 2006.
ZHANG Chunlian. Research on BG/NBD prediction model and its application of the customer purchase behavior[D]. Harbin:Harbin Institute of Technology, 2006.
[13] 刘柏鳞. 基于客户网络购物行为分析及预测系统研究[D]. 北京:北京工业大学, 2016.
LIU Bailin. The research on the analysis of customer’s online shopping behavior and prediction system[D]. Beijing:Beijing University of Technology, 2016.
[14] 陈洁, 谢文昕, 杨升荣. 在线渠道消费者动态品牌选择购买率预测[J]. 工业工程与管理, 2011, 16(3):52-56
CHEN Jie, XIE Wenxin, YANG Shengrong. Forecasting the pachase rate of online consumer’ s dynamic brand choice[J]. Industrial engineering and management, 2011, 16(3):52-56
[15] 舒方, 马少辉. 客户重复购买的组合预测方法[J]. 计算机与现代化, 2015(5):67-70
SHU Fang, MA Shaohui. A composition forecasting approach of customer repeat purchasing[J]. Computer and modernization, 2015(5):67-70
[16] 胡晓丽, 张会兵, 董俊超, 等. 基于CNN-LSTM的用户购买行为预测模型[J]. 计算机应用与软件, 2020, 37(6):59-64
HU Xiaoli, ZHANG Huibing, DONG Junchao, et al. Prediction model of user buying behavior based on CNN-LSTM[J]. Computer applications and software, 2020, 37(6):59-64
[17] 卢泓宇, 张敏, 刘奕群, 等. 卷积神经网络特征重要性分析及增强特征选择模型[J]. 软件学报, 2017, 28(11):2879-2890
LU Hongyu, ZHANG Min, LIU Yiqun, et a. Convolution neural network feature importance analysis and feature selection enhanced model[J]. Journal of software, 2017, 28(11):2879-2890
[18] ZHANG Weinan, DU Tianming, WANG Jun. Deep learning over multi-field categorical data[C]//Proceedings of 38th European Conference on Information Retrieval. Padua, Italy, 2016:45-57.
[19] GUO Huifeng, TANG Ruiming, YE Yunming, et al. DeepFM:a factorization-machine based neural network for CTR prediction[C]//The International Joint Conference on Artificial Intelligence(IJCAI). Melbourne, Australia, 2017:1725-1731.
[20] WANG Ruoxi, FU Bin, FU Gang, et al. Deep and cross network for Ad click predictions[C]//Proceedings of the ADKDD’17. NS, Canada, 2017:1-7.
相似文献/References:
[1]孔庆超,毛文吉,张育浩.社交网站中用户评论行为预测[J].智能系统学报,2015,10(3):349.[doi:10.3969/j.issn.1673-4785.201403019]
 KONG Qingchao,MAO Wenji,ZHANG Yuhao.User comment behavior prediction in social networking sites[J].CAAI Transactions on Intelligent Systems,2015,10():349.[doi:10.3969/j.issn.1673-4785.201403019]
[2]姬晓飞,谢旋,任艳.深度学习的双人交互行为识别与预测算法研究[J].智能系统学报,2020,15(3):484.[doi:10.11992/tis.201812029]
 JI Xiaofei,XIE Xuan,REN Yan.Human interaction recognition and prediction algorithm based on deep learning[J].CAAI Transactions on Intelligent Systems,2020,15():484.[doi:10.11992/tis.201812029]

备注/Memo

收稿日期:2020-06-30。
基金项目:国家重点研发计划项目(2018YFB1402600);国家自然科学基金项目(61772083,61802028);广西省科技重大专项(桂科AA18118054)
作者简介:程鹏超,硕士研究生,主要研究方向为机器学习、广告推荐、信息检索;杜军平,教授,博士生导师,主要研究方向为人工智能、社交网络分析、数据挖掘、运动图像处理。主持国家重点研发计划、“863”、“973”计划项目、国家自然科学基金重点项目、国家自然科学基金重大国际合作项目、北京市自然科学基金重点项目等多项。发表学术论文400余篇,出版学术专著6部;薛哲,副教授,主要研究方向为机器学习、人工智能、数据挖掘、图像处理。主持国家自然科学基金青年基金项目、参与国家重点研发计划项目等多项。发表学术论文30余篇,出版学术专著1部
通讯作者:杜军平.E-mail:junpingdu@126.com

更新日期/Last Update: 2021-04-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134