[1]常利伟,田晓雄,张宇青,等.基于多源异构数据融合的网络安全态势评估体系[J].智能系统学报,2021,16(1):38-47.[doi:10.11992/tis.202006053]
 CHANG Liwei,TIAN Xiaoxiong,ZHANG Yuqing,et al.Network security situation assessment architecture based on multi-source heterogeneous data fusion[J].CAAI Transactions on Intelligent Systems,2021,16(1):38-47.[doi:10.11992/tis.202006053]
点击复制

基于多源异构数据融合的网络安全态势评估体系

参考文献/References:
[1] ENDSLEY MR. Toward a theory of situation awareness in dynamic system[J]. Human factors:the journal of the human factors and ergonomics society, 1995, 37(1):32-6.
[2] BASS T. Intrusion detection systems and multisensor data fusion[J]. Communications of the ACM, 2000, 43(4):99-105.
[3] 陈继军. 多传感器管理及信息融合[D]. 西安:西北工业大学, 2002, 49-55.
CHEN Jijun. Multi-Sensor administration and information fusion[D]. Xi’an:Northwestern Polytechnical University, 2002:49-55.
[4] 诸葛建伟, 王大为, 陈昱, 等. 基于D-S证据理论的网络异常检测方法[J]. 软件学报, 2006, 17(3):463-471
ZHUGE Jianwei, WANG Dawei, CHEN Yu, et al. A network anomaly detector based on the D-S evidence theory[J]. Journal of software, 2006, 17(3):463-471
[5] 陈秀真, 郑庆华, 管晓宏, 等. 层次化网络安全威胁态势量化评估方法[J]. 软件学报, 2006, 17(4):885-897
CHEN Xiuzhen, ZHENG Qinghua, GUAN Xiaohong, et al. A network anomaly detector based on the D-S evidence theory[J]. Journal of software, 2006, 17(4):885-897
[6] 马琳茹, 杨林, 王建新. 多源异构安全信息融合关联技术研究系[J]. 系统仿真学报, 2008, 20(4):981-989
MA Linru, YANG Lin, WANG Jianxin. Research on security information fusion from multiple heterogeneous sensors[J]. Journal of system simulation, 2008, 20(4):981-989
[7] 韦勇, 连一峰, 冯登国. 基于信息融合的网络安全态势评估模型[J]. 计算机研究与发展, 2009, 46(3):353-362
WEI Yong, LIAN Yifeng, FENG Dengguo. A network security situational awareness model based on information fusion[J]. Journal of computer research and development, 2009, 46(3):353-362
[8] 刘效武, 王慧强, 吕宏武, 等. 网络安全态势认知融合感控模型[J]. 软件学报, 2016, 27(8):2099-2114
LIU Xiaowu, WANG Huiqiang, LU Hongwu, et al. Fusion-based cognitive awareness-control model for network security situation[J]. Journal of software, 2016, 27(8):2099-2114
[9] WANG Huan, CHEN Zhanfang, FENG Xin, et al. Research on network security situation assessment and quantification method based on analytic hierarchy process[J]. Wireless personal communications, 2018, 102(2):1401-1420.
[10] 龚俭, 臧小冬, 苏琪, 等. 网络安全态势感知综述[J]. 软件学报, 2017, 28(4):1010-1026
GONG Jian, ZANG Xiaodong, SU Qi, et al. Survey of network security situation awareness[J]. Journal of software, 2017, 28(4):1010-1026
[11] ZHAO Dongmei, LIU Jinxing. Study on network security situation awareness based on particle swarm optimization algorithm[J]. Computers and industrial engineering, 2018, 125:764-775.
[12] 陈维鹏, 敖志刚, 郭杰, 等. 基于改进的BP神经网络的网络空间态势感知系统安全评估[J]. 计算机科学, 2018, 45(11A):345-347, 341
CHEN Weipeng, AO Zhigang, GUO Jie, et al. Research on cyberspace situation awareness security assessment based on improved BP neural network[J]. Computer science, 2018, 45(11A):345-347, 341
[13] 贾焰, 韩伟红, 杨行. 网络安全态势感知研究现状与发展趋势[J]. 广州大学学报(自然科学版), 2019, 18(3):1-10
JIA Yan, HAN Weihong, YANG Xing. Summary of network security situation assessment[J]. Journal of Guangzhou University (natural science edition), 2019, 18(3):1-10
[14] XI Rongrong, YUN Xiaochun, HAO Zhiyu. Framework for risk assessment in cyber situational awareness[J]. Iet information security, 2019, 13(2):149-156.
[15] ZHENG Weifa. Research on situation awareness of network security assessment based on dempster-shafer[C]//2019 International Conference on Computer Science Communication and Network Security. France:Edition Diffusion Press Sciences, 2020:131-136.
[16] MOUSTAFA N, SLAY J. UNSW-NB15:a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)[C]//Proceedings of 2015 Military Communications and Information Systems Conference. Canberra, Australia:IEEE, 2015:1-6.
[17] MOUSTAFA N, SLAY J. The evaluation of network anomaly detection systems:statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set[J]. Information security journal:a global perspective, 2016, 25(1/2/3):18-31.
[18] MOUSTAFA N, SLAY J, CREECH G. Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks[J]. IEEE transactions on big data, 2019, 5(4):481-494.
[19] MOUSTAFA N, CREECH G, SLAY J. Big data analytics for intrusion detection system:statistical decision-making using finite dirichlet mixture models[M]. CARRASCOSA I P, KALUTARAGE H K, HUANG Yan. Data Analytics and Decision Support for Cybersecurity. Cham:Springer, 2017:127-156.
[20] 甘文道, 周城, 宋波. 基于RAN-RBF神经网络的网络安全态势预测模型[J]. 计算机科学, 2016,43 (11A):388-392
GAN Wendao, ZHOU Cheng, SONG Bo. Network security situation prediction model based on RAN-RBF neural network[J]. Computer science, 2016,43 (11A):388-392
[21] HECHT-NIELSEN R. Theory of the backpropagation neural network[C]//Proceedings of the International 1989 Joint Conference on Neural Networks. Washington, USA:IEEE, 1989:593-605.
相似文献/References:
[1]秦娅,申国伟,余红星.基于Hadoop的大规模网络安全实体识别方法[J].智能系统学报,2019,14(5):1017.[doi:10.11992/tis.201809024]
 QIN Ya,SHEN Guowei,YU Hongxing.Large-scale network security entity recognition method based on Hadoop[J].CAAI Transactions on Intelligent Systems,2019,14():1017.[doi:10.11992/tis.201809024]
[2]丁俐夫,颜钢锋.多智能体系统安全性问题及防御机制综述[J].智能系统学报,2020,15(3):425.[doi:10.11992/tis.201812015]
 DING Lifu,YAN Gangfeng.A survey of the security issues and defense mechanisms of multi-agent systems[J].CAAI Transactions on Intelligent Systems,2020,15():425.[doi:10.11992/tis.201812015]

备注/Memo

收稿日期:2020-06-30。
基金项目:山西省自然科学基金项目(201801D221159);山西省高等学校科技创新项目(2019L0470);山西省重点研发项目(201903D421003)
作者简介:常利伟,副教授,中国计算机学会会员、中国密码学会会员、山西省区块链研究会理事,主要研究方向为密码算法、网络安全态势感知、量子保密通信和区块链。参与国家级项目4项,主持山西省科研及教研项目3项,获山西省教学成果一等奖1项。发表学 术论文近20篇;田晓雄,硕士研究生,主要研究方向为网络安全和信息融合;张宇青,硕士研究生,主要研究方向为网络安全与模式识别
通讯作者:常利伟. E-mail:changliwei002@163.com

更新日期/Last Update: 2021-02-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134