[1]王作为,徐征,张汝波,等.记忆神经网络在机器人导航领域的应用与研究进展[J].智能系统学报,2020,15(5):835-846.[doi:10.11992/tis.202002020]
 WANG Zuowei,XU Zheng,ZHANG Rubo,et al.Research progress and application of memory neural network in robot navigation[J].CAAI Transactions on Intelligent Systems,2020,15(5):835-846.[doi:10.11992/tis.202002020]
点击复制

记忆神经网络在机器人导航领域的应用与研究进展

参考文献/References:
[1] 刘强, 段富海, 桑勇. 复杂环境下视觉SLAM闭环检测方法综述[J]. 机器人, 2019, 41(1): 112-123, 136
LIU Qiang, DUAN Fuhai, SANG Yong. A survey of loop-closure detection method of visual SLAM in complex environments[J]. Robot, 2019, 41(1): 112-123, 136
[2] KULKARNI T D, SAEEDI A, GAUTAM S, et al. Deep successor reinforcement learning[J]. arXiv preprint arXiv: 1606.02396v1, 2016.
[3] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, USA, 2016: 1928-1937.
[4] ZHU Yuke, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore, 2016.
[5] MIROWSKI P, PASCANU R, VIOLA F, et al. Learning to navigate in complex environments[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon, France, 2017.
[6] JADERBERG M, MNIH V, CZARNECKI W M, et al. Reinforcement learning with unsupervised auxiliary tasks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon, France, 2016.
[7] HEESS N, HUNT J J, LILLICRAP T P, et al. Memory-based control with recurrent neural networks[C]//Proceedings of the Workshops of Advances in Neural Information Processing Systems. Montreal, Canada, 2015: 301-312.
[8] RAMANI D. A short survey on memory based reinforcement learning[J]. arXiv preprint arXiv:1904.06736v1, 2019.
[9] SAVINOV N, DOSOVITSKIY A, KOLTUN V. Semi-parametric topological memory for navigation[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[10] SUKHBAATAR A, WESTON J, FERGUS R, et al. End-to-end memory networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 2440-2448.
[11] ZHANG Lei, WANG Shuai, LIU Bing. Deep learning for sentiment analysis: A survey[J]. Wiley interdisciplinary reviews: data mining and knowledge discovery, 2018, 8(4): e1253.
[12] YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[J]. IEEE computational intelligence magazine, 2018, 13(3): 55-75.
[13] OH J, CHOCKALINGAM V, SINGH S, et al. Control of memory, active perception, and action in minecraft[C]//Proceedings of the 33nd International Conference on Machine Learning. New York, USA, 2016: 2790-2799.
[14] BOTHE C, MAGG S, WEBER C, et al. Conversational analysis using utterance-level attention-based bidirectional recurrent neural networks[C]//Proceedings of the 19th Annual Conference of the International Speech Communication Association. Hyderabad, India, 2018.
[15] 张新生, 高腾. 多头注意力记忆网络的对象级情感分类[J]. 模式识别与人工智能, 2019, 32(11): 997-1005
ZHANG Xinsheng, GAO Teng. Aspect level sentiment classification with multiple-head attention memory network[J]. Pattern recognition and artificial intelligence, 2019, 32(11): 997-1005
[16] BAHDANAU D, CHOROWSKI J, SERDYUK D, et al. End-to-end attention-based large vocabulary speech recognition[C]//Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai, China, 2016: 4945-4949.
[17] JETLEY S, LORD N A, LEE N, et al. Learn to pay attention[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[18] 梁天新, 杨小平, 王良, 等. 记忆神经网络的研究与发展[J]. 软件学报, 2017, 28(11): 2905-2924
LIANG Tianxin, YANG Xiaoping, WANG Liang, et al. Review on research and development of memory neural networks[J]. Journal of software, 2017, 28(11): 2905-2924
[19] TANG Duyu, QIN Bing, LIU Ting. Aspect level sentiment classification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA, 2016.
[20] GRAVES A, WAYNE G, REYNOLDS M, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 2016, 538(7626): 471-476.
[21] YANG Feng, ZHANG Shiyue, ZHANG Andi, et al. Memory-augmented neural machine translation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen, Denmark, 2017.
[22] CINGILLIOGLU N, RUSSO A. DeepLogic: towards end-to-end differentiable logical reasoning[C]//Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering. Palo Alto, USA, 2019.
[23] 廖祥文, 林威, 吴运兵, 等. 基于辅助记忆循环神经网络的视角级情感分析[J]. 模式识别与人工智能, 2019, 32(11): 987-996
LIAO Xiangwen, LIN Wei, WU Yunbing, et al. Aspect level sentiment analysis based on recurrent neural network with auxiliary memory[J]. Pattern recognition and artificial intelligence, 2019, 32(11): 987-996
[24] DAI Hanjun, KHALIL E B, ZHANG Yuyu, et al. Learning combinatorial optimization algorithms over graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA, 2017: 6351-6361.
[25] PARISI G I, KEMKER R, PART J L, et al. Continual lifelong learning with neural networks: a review[J]. Neural networks, 2019, 113: 54-71.
[26] PARISOTTO E, SALAKHUTDINOV R. Neural map: Structured memory for deep reinforcement learning[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[27] PRITZEL A, URIA B, SRINIVASAN S, et al. Neural episodic control[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia, 2017: 2827-2836.
[28] BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517.
[29] ZHANG Jingwei, TAI Lei, BOEDECKER J, et al. Neural SLAM: learning to explore with external memory[J]. arXiv:1706.09520v4, 2017.
[30] CHAPLOT D S, PARISOTTO E, SALAKHUTDINOV R. Active neural localization[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[31] CHUNG J, GüLCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555v1, 2014.
[32] TAMAR A, WU Yi, THOMAS G, et al. Value iteration networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia, 2017: 4949-4953.
[33] GUPTA S, DAVIDSON J, LEVINE S, et al. Cognitive mapping and planning for visual navigation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 7272-7281.
[34] KHAN A, ZHANG C, ATANASOV N, et al. Memory augmented control networks[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[35] SUTTON R S, PRECUP D, SINGH S. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning[J]. Artificial intelligence, 1999, 112(1/2): 181-211.
[36] RABINER L R. A tutorial on hidden markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286.
[37] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of basic engineering, 1960, 82(1): 35-45.
[38] CHUNG J, KASTNER K, DINH L, et al. A recurrent latent variable model for sequential data[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 2962-2970.
[39] KRISHNAN R G, SHALIT U, SONTAG D. Deep Kalman filters[J]. arXiv preprint arXiv:1511.05121v2, 2015.
[40] GEMICI M, HUNG C C, SANTORO A, et al. Generative temporal models with memory[J]. arXiv preprint arXiv:1702.04649v2, 2017.
[41] FRACCARO M, REZENDE D J, ZWOLS Y, et al. Generative temporal models with spatial memory for partially observed environments[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden, 2018.
[42] WAYNE G, HUNG C C, AMOS D, et al. Unsupervised predictive memory in a goal-directed agent[J]. arXiv preprint arXiv:1803.10760v1, 2018.
[43] BEATTIE C, LEIBO J Z, TEPLYASHIN D, et al. Deepmind lab[J]. arXiv:1612.03801v2, 2016.
[44] JOHNSON M, HOFMANN K, HUTTON T, et al. The Malmo platform for artificial intelligence experimentation[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, American, 2016.
[45] KEMPKA M, WYDMUCH M, RUNC G, et al. Vizdoom: A doom-based AI research platform for visual reinforcement learning[C]//Proceedings of IEEE Conference on Computational Intelligence and Games. Santorini, Greece, 2016.
[46] WU Yi, WU Yuxin, GKIOXARI G, et al. Building generalizable agents with a realistic and rich 3D environment[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[47] SONG Shuran, YU F, ZENG A, et al. Semantic scene completion from a single depth image[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 190-198.
[48] BRODEUR S, PEREZ E, ANAND A, et al. Home: a household multimodal environment[C]//Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[49] SAVVA M, CHANG A X, DOSOVITSKIY A, et al. MINOS: Multimodal indoor simulator for navigation in complex environments[J]. arXiv:1712.03931v1, 2017.
[50] KOLVE E, MOTTAGHI R, HAN W, et al. AI2-thor: An interactive 3D environment for visual AI[J]. /arXiv:1712.05474v3, 2019.
[51] YANG Wei, WANG Xiaolong, FARHADI A, et al. Visual semantic navigation using scene priors[C]//Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA, 2019.
[52] MIROWSKI P, GRIMES M K, MALINOWSKI M, et al. Learning to navigate in cities without a map[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal, Canada, 2018: 2424-2435.
相似文献/References:
[1]张毅,陈起,罗元.室内环境下移动机器人三维视觉SLAM[J].智能系统学报,2015,10(4):615.[doi:10.3969/j.issn.1673-4785.201504003]
 ZHANG Yi,CHEN Qi,LUO Yuan.Three dimensional visual SLAM for mobile robots in indoor environments[J].CAAI Transactions on Intelligent Systems,2015,10(5):615.[doi:10.3969/j.issn.1673-4785.201504003]
[2]蒲兴成,谭少峰,张毅.基于改进FAST算法的移动机器人导航[J].智能系统学报,2014,9(4):419.[doi:10.3969/j.issn.1673-4785.201305076]
 PU Xingcheng,TAN Shaofeng,ZHANG Yi.Research on the navigation of mobile robots based on the improved FAST algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(5):419.[doi:10.3969/j.issn.1673-4785.201305076]

备注/Memo

收稿日期:2020-02-27。
基金项目:国家自然科学基金面上项目(61972456);天津市教委科研计划项目(2019KJ018);天津工业大学学位与研究生教育改革项目(Y20180104)
作者简介:王作为,副教授,主要研究方向为智能机器人与智能控制、机器学习与人工智能。主持省部级、局级基金项目3项。发表学术论文20余篇;徐征,副教授,主要研究方向为电机控制与运动控制系统。获天津市科技进步二等奖1项。主持和参与省部级基金项目5项。发表学术论文8篇;张汝波,教授,博士生导师,主要研究方向为智能机器人与智能控制、机器学习与计算智能、智能信息处理。主持完成国防973、国家863、国家自然科学基金项目、省自然科学基金项目和国防预研项目20余项,获国家科学技术进步二等奖1项、国防科学技术奖3项、中国船舶工业总公司科技进步奖2项。发表学术论文200余篇
通讯作者:王作为.E-mail:wangzuowei@126.com

更新日期/Last Update: 2021-01-15
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134