[1]YOCHUM Phatpicha,常亮,古天龙,等.基于位置和开放链接数据的旅游推荐系统综述[J].智能系统学报,2020,15(1):25-32.[doi:10.11992/tis.201912023]
 YOCHUM Phatpicha,CHANG Liang,GU Tianlong,et al.A review of linked open data in location-based recommendation system in the tourism domain[J].CAAI Transactions on Intelligent Systems,2020,15(1):25-32.[doi:10.11992/tis.201912023]
点击复制

基于位置和开放链接数据的旅游推荐系统综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年1期
页码:
25-32
栏目:
综述
出版日期:
2020-01-01

文章信息/Info

Title:
A review of linked open data in location-based recommendation system in the tourism domain
作者:
YOCHUM Phatpicha 常亮 古天龙 祝曼丽
桂林电子科技大学 广西可信软件重点实验室, 广西 桂林 541004
Author(s):
YOCHUM Phatpicha CHANG Liang GU Tianlong ZHU Manli
Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
关键词:
开放链接数据基于位置的推荐旅游路线推荐轨迹挖掘个性化推荐本体
Keywords:
linked open datalocation-based recommendationtourism route recommendationtrajectory miningpersonalized recommendationontology
分类号:
TP301
DOI:
10.11992/tis.201912023
摘要:
利用开放链接数据解决基于位置的推荐系统中存在的信息过载问题是目前的研究热点,并在旅游领域展现出了巨大的潜力。首先给出推荐系统的基本概况;然后对旅游开放链接数据进行了概况;从文献分类、应用分类和研究成果对基于位置和开放链接数据的旅游推荐系统从2014—2018年的相关文献进行了详细考察,并从基于位置的单点推荐、旅游路线推荐、GPS轨迹推荐、基于媒介的地理标签推荐、基于本体的位置推荐和基于位置的朋友推荐等6类典型的应用进行分类考察,最后对全文并为该领域指明了研究方向。
Abstract:
Using linked open data to solve the problem of information overload in location-based recommendation system is currently a hot topic. In particular, it has shown a great promising future in the tourism area. First, we make an introduction to the recommendation system, then present linked open data of tourism. We also have a detailed survey of journal papers that were published from 2014 to 2018 on the recommendation system in the tourism domain based on location and linked open data, including classification of publications, categorization of recommendation applications, and research achievements. Further, the applications of six typical types of linked open data in location-based tourism recommendation system, such as stand-alone point location-based recommendation, travel route recommendation, GPS trajectory-based recommendation, geo-tagged-media-based recommendation, ontology-based location recommendation, and location-based friend recommendation, are investigated in detail. A summary of the paper and the future research directions are made in the end.

参考文献/References:

[1] DE PESSEMIER T, DHONDT J, MARTENS L. Hybrid group recommendations for a travel service[J]. Multimedia tools and applications, 2017, 76(2): 2787–2811.
[2] 常亮, 曹玉婷, 孙文平, 等. 旅游推荐系统研究综述[J]. 计算机科学, 2017, 44(10): 1–6
[3] ZIMBA B, CHIBUTA S, CHISANGA D, et al. Point of interest recommendation methods in location based social networks: traveling to a new geographical region[J]. arXiv: 1711.09471, 2017.
[4] WANG Donghui, LIANG Yanchun, XU Dong, et al. A content-based recommender system for computer science publications[J]. Knowledge-based systems, 2018, 157: 1–9.
[5] FU Mingsheng, QU Hong, YI Zhang, et al. A novel deep learning-based collaborative filtering model for recommendation system[J]. IEEE transactions on cybernetics, 2019, 49(3): 1084–1096.
[6] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-based systems, 2013, 46: 109–132.
[7] PAZZANI M J. A framework for collaborative, content-based and demographic filtering[J]. Artificial intelligence review, 1999, 13(5/6): 393–408.
[8] LUCAS J P, LUZ N, MORENO M N, et al. A hybrid recommendation approach for a tourism system[J]. Expert systems with applications, 2013, 40(9): 3532–3550.
[9] LONGHI E, Titz JB, et al.“Open data: Challenges and opportunities for the tourism industry,”Tourism management, Marketing and development[J]. 2014, 57-76.
[10] SAH M, WADE V. Personalized concept-based search on the linked open data[J]. Journal of web semantics, 2016, 36: 32–57.
[11] PANTANO E, PRIPORAS C V, STYLOS N. ‘You will like it!’ using open data to predict tourists’ response to a tourist attraction[J]. Tourism management, 2017, 60: 430–438.
[12] REN Xingyi, SONG Meina, E Haihong, et al. Context-aware probabilistic matrix factorization modeling for point-of-interest recommendation[J]. Neurocomputing, 2017, 241: 38–55.
[13] GAO Rong, LI Jing, DU Bo, et al. Exploiting geo-social correlations to improve pairwise ranking for point-of-interest recommendation[J]. China communications, 2018, 15(7): 180–201.
[14] LI Xin, XU Guandong, CHEN Enhong, et al. Learning recency based comparative choice towards point-of-interest recommendation[J]. Expert systems with applications, 2015, 42(9): 4274–4283.
[15] GAO Rong, LI Jing, LI Xuefei, et al. A personalized point-of-interest recommendation model via fusion of geo-social information[J]. Neurocomputing, 2018, 273: 159–170.
[16] XU Guandong, FU Bin, GU Yanhui. Point-of-interest recommendations via a supervised random walk algorithm[J]. IEEE intelligent systems, 2016, 31(1): 15–23.
[17] GAO Rong, LI Jing, LI Xuefei, et al. STSCR: exploring spatial-temporal sequential influence and social information for location recommendation[J]. Neurocomputing, 2018, 319: 118–133.
[18] WEN Yuting, YEO J, PENG W, et al. Efficient keyword-aware representative travel route recommendation[J]. IEEE transactions on knowledge and data engineering, 2017, 29(8): 1639–1652.
[19] LU E H C, FANG S H, TSENG V S. Integrating tourist packages and tourist attractions for personalized trip planning based on travel constraints[J]. GeoInformatica, 2016, 20(4): 741–763.
[20] HANG Lei, KANG S H, JIN Wenquan, et al. Design and implementation of an optimal travel route recommender system on big data for tourists in Jeju[J]. Processes, 2018, 6(8): 133.
[21] W?RNDL W, HEFELE A, HERZOG D. Recommending a sequence of interesting places for tourist trips[J]. Information technology & tourism, 2017, 17(1): 31–54.
[22] JIANG Shuhui, QIAN Xueming, MEI Tao, et al. Personalized travel sequence recommendation on multi-source big social media[J]. IEEE transactions on big data, 2016, 2(1): 43–56.
[23] CUI Ge, LUO Jun, WANG Xin. Personalized travel route recommendation using collaborative filtering based on GPS trajectories[J]. International journal of digital earth, 2018, 11(3): 284–307.
[24] DUAN Zongtao, TANG Lei, GONG Xuehui, et al. Personalized service recommendations for travel using trajectory pattern discovery[J]. International journal of distributed sensor networks, 2018, 14(3).
[25] CHEN Dawei, ONG C S, XIE Lexing. Learning points and routes to recommend trajectories[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. Indianapolis, IN, USA, 2016.
[26] ZHU Liang, XU Changqiao, GUAN Jianfeng, et al. SEM-PPA: a semantical pattern and preference-aware service mining method for personalized point of interest recommendation[J]. Journal of network and computer applications, 2017, 82: 35–46.
[27] HSIEH H P, LI Chengte, LIN Shoude. Measuring and recommending time-sensitive routes from location-based data[J]. ACM transactions on intelligent systems and technology, 2014, 5(3): 45.
[28] SUN Yeran, FAN Hongchao, BAKILLAH M, et al. Road-based travel recommendation using geo-tagged images[J]. Computers, environment and urban systems, 2015, 53: 110–122.
[29] LIM K H, CHAN J, LECKIE C, et al. Personalized trip recommendation for tourists based on user interests, points of interest visit durations and visit recency[J]. Knowledge and information systems, 2018, 54(2): 375–406.
[30] HAN J, LEE H. Adaptive landmark recommendations for travel planning: personalizing and clustering landmarks using geo-tagged social media[J]. Pervasive and mobile computing, 2015, 18: 4–17.
[31] KAUSHIK S, TIWARI S, AGARWAL C, et al. Ubiquitous crowdsourcing model for location recommender system[J]. Journal of computers, 2016, 11(6): 463–471.
[32] YU Yaxin, ZHAO Yuhai, YU Ge, et al. Mining coterie patterns from Instagram photo trajectories for recommending popular travel routes[J]. Frontiers of computer science, 2017, 11(6): 1007–1022.
[33] WANG Xiangyu, ZHAO Yiliang, NIE Liqiang, et al. Semantic-based location recommendation with multimodal venue semantics[J]. IEEE transactions on multimedia, 2015, 17(3): 409–419.
[34] ARAIN Q A, MEMON H, MEMON I, et al. Intelligent travel information platform based on location base services to predict user travel behavior from user-generated GPS traces[J]. International journal of computers and applications, 2017, 39(3): 155–168.
[35] PáLOVICS R, SZALAI P, PAP J, et al. Location-aware online learning for top-k recommendation[J]. Pervasive and mobile computing, 2017, 38: 490–504.
[36] SMIRNOV A V, KASHEVNIK A M, PONOMAREV A. Context-based infomobility system for cultural heritage recommendation: Tourist Assistant—TAIS[J]. Personal and ubiquitous computing, 2017, 21(2): 297–311.
[37] SHI Lin, LIN Feiyu, YANG Tianchu, et al. Context-based ontology-driven recommendation strategies for tourism in ubiquitous computing[J]. Wireless personal communications, 2014, 76(4): 731–745.
[38] VOLKOVA L, YAGUNOVA E, PRONOZA E, et al. Recommender system for tourist itineraries based on aspects extraction from reviews corpora[J]. Polibits, 2018, 57: 81–88.
[39] FERRARO P, LO RE G. Designing ontology-driven recommender systems for tourism[M]//GAGLIO S, LO RE G. Advances onto the Internet of Things. Cham, Germany: Springer, 2014: 339-352.
[40] KESORN K, JURAPHANTHONG W, SALAIWARAKUL A. Personalized attraction recommendation system for tourists through check-in data[J]. IEEE access, 2017, 5: 26703–26721.
[41] GAO Xurui, WANG Li, WU Weili. Using multi-features to recommend friends on location-based social networks[J]. Peer-to-peer networking and applications, 2017, 10(6): 1323–1330.
[42] KOSMIDES P, DEMESTICHAS K P, ADAMOPOULOU E, et al. Providing recommendations on location-based social networks[J]. Journal of ambient intelligence and humanized computing, 2016, 7(4): 567–578.
[43] ZHAO Xiangguo, MA Zhongyu, ZHANG Zhen. A novel recommendation system in location-based social networks using distributed ELM[J]. Memetic computing, 2018, 10(3): 321–331.
[44] HUANG Liwei, MA Yutao, LIU Yanbo. Point-of-interest recommendation in location-based social networks with personalized geo-social influence[J]. China communications, 2015, 12(12): 21–31.
[45] KEFALAS P, SYMEONIDIS P, MANOLOPOULOS Y. Recommendations based on a heterogeneous spatio-temporal social network[J]. World wide web, 2018, 21(2): 345–371.

相似文献/References:

[1]匡海丽,常亮,宾辰忠,等.上下文感知旅游推荐系统研究综述[J].智能系统学报,2019,14(04):611.[doi:10.11992/tis.201901013]
 KUANG Haili,CHANG Liang,BIN Chenzhong,et al.Review of a context-aware travel recommendation system[J].CAAI Transactions on Intelligent Systems,2019,14(1):611.[doi:10.11992/tis.201901013]

备注/Memo

备注/Memo:
收稿日期:2019-12-18。
基金项目:国家自然科学基金项目(U1711263,U1811264);广西自然科学基金项目(2018GXNSFDA281045)
作者简介:YOCHUM Phatpicha,博士研究生,主要研究方向为机器学习、推荐系统;常亮,教授,博士,中国计算机学会高级会员,主要研究方向为数据与知识工程、形式化方法、智能系统。主持并完成国家自然科学基金项目1项、广西省自然科学基金项目1项,发表学术论文70余篇;古天龙,教授,博士生导师,博士,主要研究方向为形式化方法、知识工程与符号推理、协议工程与移动计算、可信泛在网络、嵌入式系统。主持国家863计划项目、国家自然科学基金、国防预研重点项目、国防预研基金项目等30余项。出版学术著作3部,发 表学术论文130余篇
通讯作者:常亮.E-mail:changl@guet.edu.cn
更新日期/Last Update: 1900-01-01