[1]逄增治,郑修楠,李金屏.全钢子午线轮胎X光图像的缺陷检测研究现状[J].智能系统学报,2019,14(04):793-803.[doi:10.11992/tis.201806014]
 PANG Zengzhi,ZHENG Xiunan,LI Jinping.Research status of defect detection in X-ray images of all-steel radial tires[J].CAAI Transactions on Intelligent Systems,2019,14(04):793-803.[doi:10.11992/tis.201806014]
点击复制

全钢子午线轮胎X光图像的缺陷检测研究现状(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年04期
页码:
793-803
栏目:
出版日期:
2019-07-02

文章信息/Info

Title:
Research status of defect detection in X-ray images of all-steel radial tires
作者:
逄增治123 郑修楠123 李金屏123
1. 济南大学 信息科学与工程学院, 山东 济南 250022;
2. 济南大学 山东省网络环境智能计算技术重点实验室, 山东 济南 250022;
3. 济南大学 山东省"十三五"高校信息处理与认知计算重点实验室, 山东 济南 250022
Author(s):
PANG Zengzhi123 ZHENG Xiunan123 LI Jinping123
1. School of Information Science and Engineering, University of Ji’nan, Ji’nan 250022, China;
2. Shandong Provincial Key Laboratory of Network Based Intelligent Computing (University of Ji’nan), Ji’nan 250022, China;
3. Shandong College and University Key Laboratory of Information Processing and Cognitive Computing in 13th Five-year, Ji’nan 250022, China
关键词:
全钢子午线轮胎X光图像缺陷检测图像处理机器学习字典学习傅里叶变换Gabor变换
Keywords:
all-steel radial tiresX-ray imagesdefect detectionimage processingmachine learningdictionary learningFourier transformationGabor transformation
分类号:
TP391
DOI:
10.11992/tis.201806014
摘要:
全钢子午线轮胎结构复杂,生产过程中会出现多种缺陷,利用图像处理技术能够对全钢子午线轮胎的X光图像进行缺陷检测。为了更清楚地梳理现存算法,对当前全钢子午线轮胎X光图像的缺陷检测算法做了大量调研。首先,对全钢子午线轮胎缺陷检测的研究现状及发展历程做了梳理和回顾;然后,对全钢子午线轮胎缺陷进行分类,根据不同类型的缺陷分别介绍该类缺陷的主要检测方法,并对检测方法进行优缺点分析;最后,指出未来在全钢子午线轮胎缺陷研究领域中面临的挑战,展望了轮胎缺陷检测技术的发展方向。
Abstract:
All-steel radial tires have complex structures and there may be many defects in their production process. Image processing technology can be used to detect the defects of all-steel radial tires in X-ray images. In order to better sort out the existing algorithms, we have conducted research into the current defect detection algorithms for X-ray images of all-steel radial tires. First, we studied the current status and development history of defect detection for all-steel radial tires. We then classified the defects of all-steel radial tires, and made an introduction to the main detection methods for these defects according to different defect types, and analyzed their advantages and disadvantages. Finally, we pointed out the challenges in future research and look forward to the development direction of defect detection technology.

参考文献/References:

[1] 朱诗顺, 戴骏程, 孙燕, 等. 基于激光散斑干涉的轮胎缺陷无损检测[J]. 军事交通学院学报, 2016, 18(9):44-48 ZHU Shishun, DAI Juncheng, SUN Yan, et al. Nondestructive testing of tire defects based on laser speckle interference[J]. Journal of Military Transportation University, 2016, 18(9):44-48
[2] ZHANG Yan, LI Tao, LI Qingling. Defect detection for tire laser shearography image using curvelet transform based edge detector[J]. Optics and laser technology, 2013, 47:64-71.
[3] 原培新, 张晓慧. 数字图像处理在汽车轮胎X射线检测中的应用[J]. CT理论与应用研究, 2007, 16(2):48-51 YUAN Peixin, ZHANG Xiaohui. X-ray detection of tyre with digital image processing[J]. CT theory and applications, 2007, 16(2):48-51
[4] 王晓明, 陈军芳. 轮胎内部缺陷微波无损检测方法[J]. 轮胎工业, 2004, 24(7):428-431 WANG Xiaoming, CHEN Junfang. Micro-wave non-destructive inspection for interior defects of tire[J]. Tire industry, 2004, 24(7):428-431
[5] 高瑞. X光轮胎图像缺陷识别软件系统结构的研究[D]. 天津:天津大学, 2007. GAO Rui. The research of software system structure in X-ray tire image flaw recognition[D]. Tianjin:Tianjin University, 2007.
[6] 朱越. 工程子午线轮胎X射线图像检测技术中的若干问题研究[D]. 天津:天津大学, 2010. ZHU Yue. Study on X-ray image inspection technology of engineering radial tire[D]. Tianjin:Tianjin University, 2010.
[7] 陈平, 韩焱, 潘晋孝. 变能量X射线多谱成像方法研究[J]. 光谱学与光谱分析, 2013, 33(5):1383-1387 CHEN Ping, HAN Yan, PAN Jinxiao. Research on X-ray multispectrum imaging based on variable energy[J]. Spectroscopy and spectral analysis, 2013, 33(5):1383-1387
[8] 郭奇. 基于X射线轮胎缺陷检测系统设计[D]. 太原:中北大学, 2015. GUO Qi. The design of the tires defect detection system based on X-ray[D]. Taiyuan:North University of China, 2015.
[9] 崔雪红, 刘云, 王传旭, 等. 基于卷积神经网络的轮胎缺陷X光图像分类[J]. 电子测量技术, 2017, 40(5):168-173 CUI Xuehong, LIU Yun, WANG Chuanxu, et al. Defect classification for tire X-ray images using convolutional neural network[J]. Electronic measurement technology, 2017, 40(5):168-173
[10] 黄战华, 刘正, 朱猛, 等. 基于统计特征的轮胎纹理缺陷在线检测[J]. 光学技术, 2009, 35(1):60-62, 66 HUANG Zhanhua, LIU Zheng, ZHU Meng, et al. Defects on-line detection of tire textures based on statistical features[J]. Optical technique, 2009, 35(1):60-62, 66
[11] 刘正. 轮胎X光检测与多纹理图像分析技术的研究[D]. 天津:天津大学, 2009. LIU Zheng. Tyre X-ray inspection and multi-textural image analysis technology[D]. Tianjin:Tianjin University, 2009.
[12] 黄战华, 刘正, 罗文斌, 等. 基于频谱滤波的多纹理提取算法[J]. 光电工程, 2008, 35(8):51-55 HUANG Zhanhua, LIU Zheng, LUO Wenbin, et al. Multi-texture extraction method based on frequency spectrum filtering[J]. Opto-electronic engineering, 2008, 35(8):51-55
[13] 周欣. 轮胎子午线故障检测中的图像处理算法研究[D]. 沈阳:东北大学, 2014. ZHOU Xin. Research on the algorithms of image processing in fault diagnosis of the radial tires’ cords[D]. Shenyang:Northeastern University, 2014.
[14] GUO Qiang, WEI Zhenwen. Tire defect detection using image component decomposition[J]. Research journal of applied sciences, engineering and technology, 2012, 4(1):41-44.
[15] 张岩, 李涛, 李庆领. 基于全变分模型的子午线轮胎X射线图像胎侧缺陷自动检测方法[J]. 青岛科技大学学报(自然科学版), 2017, 38(3):106-112 ZHANG Yan, LI Tao, LI Qingling. Automatic radial tire sidewall defect detection in tire X-ray images based on total variation model[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2017, 38(3):106-112
[16] 朱越, 刘文耀, 袁晔, 等. 一种轮胎X射线图像缺陷提取和分割方法[J]. 光电子·激光, 2010, 21(5):758-761 ZHU Yue, LIU Wenyao, YUAN Ye, et al. A defect extraction and segmentation method for radial tire X-ray image[J]. Journal of optoelectronics·laser, 2010, 21(5):758-761
[17] 林佳佳, 吴则举, 刘中冬. 轮胎X射线0号带束层接头检测定位量化算法的研究[J]. 科学技术与工程, 2016, 16(25):121-125, 136 LIN Jiajia, WU Zeju, LIU Zhongdong. One inspection algorithm to the splice of 0# belt[J]. Science technology and engineering, 2016, 16(25):121-125, 136
[18] 陈勤, 王涛, 刘茵. 轮胎透视图的一种整体区域分割方法[J]. 计算机工程与科学, 2007, 29(4):42-44 CHEN Qin, WANG Tao, LIU Yin. An integer region segmentation method of tyre scenograph[J]. Computer engineering & science, 2007, 29(4):42-44
[19] 张茂强. 子午轮胎缺陷检测方法与系统设计研究[D]. 济南:山东大学, 2014. ZHANG Maoqiang. Research on detection method and system design of radial tire’s defects[D]. Jinan:Shandong University, 2014.
[20] 郑筱智. 基于空域与频域结合的轮胎缺陷检测[D]. 济南:山东财经大学, 2016. ZHENG Xiaozhi. Tire defect detection based on integration of spatial and frequency domains[D]. Jinan:Shandong University of Finance and Economics, 2016.
[21] ZHANG Maoqiang, GUO Qiqng, YANG Xingqiang. Tire defect detection on impurities[J]. Computer aided drafting, design and manufacturing, 2014, 24(1):32-35.
[22] 章玲. 基于图像放缩算法的轮胎缺陷检测系统研究与实现[D]. 济南:山东大学, 2015. ZHANG Ling. The research and implementation of tire defection system with image scaling function[D]. Jinan:Shandong University, 2015.
[23] 李杰. 基于轮胎质量检测成像与常见故障识别算法研究[D]. 沈阳:东北大学, 2012. LI Jie. Research on the image of tyres quality test and common fault recognition algorithms[D]. Shenyang:Northeastern University, 2012.
[24] 张小丽. 轮胎缺陷X光检测图像的处理与识别研究[D]. 天津:天津大学, 2007. ZHANG Xiaoli. Processing and recognition of defects in X-ray tire image[D]. Tianjin:Tianjin University, 2007.
[25] 应崎伟. 汽车轮胎瑕疵的计算机视觉识别系统[D]. 杭州:杭州电子科技大学, 2012. YING Qiwei. Computer version system for tire defects[D]. Hangzhou:Hangzhou Dianzi University, 2012.
[26] 于向茹, 丁健配, 李金屏. 轮胎帘线交叉重叠缺陷检测[J]. 济南大学学报(自然科学版), 2017, 31(6):494-498 YU Xiangru, DING Jianpei, LI Jinping. Detection of cross-over cord defect on tire[J]. Journal of University of Jinan (Natural science Edition), 2017, 31(6):494-498
[27] 袁晔. X光轮胎缺陷自动检测系统的研究[D]. 天津:天津大学, 2008. YUAN Ye. X-ray tire defects automatic detection system[D]. Tianjin:Tianjin University, 2008.
[28] 邵明红. 轮胎缺陷检测的处理和算法研究[D]. 济南:山东大学, 2012. SHAO Minghong. Treatment and algorithm research of tires defects detection[D]. Jinan:Shangdong University, 2012.
[29] 王冰. 工程轮胎X光检测机控制系统的研究与设计[D]. 天津:天津大学, 2010. WANG Bing. Research and design on X-ray otr tire detector control system[D]. Tianjin:Tianjin University, 2010.
[30] 林丽红. 轮胎X光检测机的图像处理算法研究[D]. 广州:华南理工大学, 2016. LIN Lihong. Research on the algorithm of image processing for tire X-ray detector[D]. Guangzhou:South China University of Technology, 2016.
[31] 张岩. 基于计算机视觉的轮胎缺陷无损检测关键问题研究[D]. 青岛:青岛科技大学, 2014. ZHANG Yan. Research on nondestructive tire defect detection using computer vision methods[D]. Qingdao:Qingdao University of Science and Technology, 2014.
[32] 刘宏贵. 轮胎X射线图像缺陷检测算法研究[J]. 传感器世界, 2014, 20(11):14-18 LIU Honggui. Study of defect detection algorithms for X-ray images of tires[J]. Sensor world, 2014, 20(11):14-18
[33] 高鹏. 基于X光图像的轮胎内部缺陷检测技术研究[D]. 天津:天津大学, 2009. GAO Peng. Technology of tire internal defects detection based on the X-ray image[D]. Tianjin:Tianjin University, 2009.
[34] 张潘杰, 郑修楠, 李金屏. 基于穿线法的轮胎帘线断裂缺陷检测[J]. 济南大学学报(自然科学版), 2018, 32(2):102-106 ZHANG Panjie, ZHENG Xiunan, LI Jinping. Tire cord breakage detection based on threading method[J]. Journal of University of Jinan (Natural science Edition), 2018, 32(2):102-106
[35] ZHANG Yan, LEFEBVRE D, LI Qingling. Automatic detection of defects in tire radiographic images[J]. IEEE transactions on automation science and engineering, 2017, 14(3):1378-1386.
[36] GUO Qiang, ZHANG Caiming, LIU Hui, et al. Defect detection in tire X-ray images using weighted texture dissimilarity[J]. Journal of sensors, 2016, 2016:4140175.
[37] 陶沈明. 轮胎缺陷检测系统的研究与实现[D]. 济南:山东大学, 2016. TAO Shenming. The research and implementation of the tire defects detection system[D]. Jinan:Shandong University, 2016.
[38] XIANG Yuanyuan. Tire defect detection using local and global features[J]. Computer aided drafting, design and manufacturing, 2013, 23(4):49-52.
[39] 向媛媛. 基于图像字典表示的缺陷检测算法[D]. 济南:山东财经大学, 2015. XIANG Yuanyuan. Defect detection algorithm based on image dictionary representation[D]. Jinan:Shandong University of Finance and Economics, 2015.
[40] XIANG Yuanyuan, ZHANG Caiming, GUO Qiang. A dictionary-based method for tire defect detection[C]//Proceedings of 2014 IEEE International Conference on Information and Automation. Hailar, China, 2014:519-523.
[41] ZHANG Yan, LI Tao, LI Qingling. Detection of foreign bodies and bubble defects in tire radiography images based on total variation and edge detection[J]. Chinese physics letters, 2013, 30(8):084205.
[42] 张斌, 林森, 高书征. 基于图像处理的轮胎X光图像杂质检测技术[J]. 橡塑技术与装备(橡胶), 2016, 42(9):50-54 ZHANG Bin, LIN Sen, GAO Shuzheng. Tire X-ray image impurity detection based on image processing technology[J]. China rubber/plastics technology and equipment (rubber), 2016, 42(9):50-54
[43] 徐啟蕾. 轮胎X光图像自动识别系统算法研究[D]. 青岛:青岛科技大学, 2006. XU Qilei. Research of automatic tire X-ray image analysis algorithm[D]. Qingdao:Qingdao University of Science and Technology, 2006.
[44] MAK K L, PENG Pai, YIU K F C. Fabric defect detection using multi-level tuned-matched Gabor filters[J]. Journal of industrial and management optimization, 2012, 8(2):325-341.
[45] KUMAR A, PANG G K H. Defect detection in textured materials using Gabor filters[J]. IEEE transactions on industry applications, 2002, 38(2):425-440.
[46] 王泽华, 杨清雷. 轮胎纹理分层的Gabor滤波器设计[J]. 青岛科技大学学报(自然科学版), 2009, 30(6):536-540 WANG Zehua, YANG Qinglei. An algorithm of designing Gabor filters for getting every texture layer of multi-layers texture tyre image[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2009, 30(6):536-540
[47] 林佳佳. 基于轮胎X光图像的0号带束层缺陷检测算法研究[D]. 青岛:青岛科技大学, 2017. LIN Jiajia. Research on defect detection algorithm of #0 belt in tire X-ray images[D]. Qingdao:Qingdao University of Science and Technology, 2017.
[48] 张传海. 纹理无关的裂纹缺陷检测算法[D]. 济南:山东大学, 2013. ZHANG Chuanhai. Texture-invariant detection method for tire crack[D]. Jinan:Shandong University, 2013.
[49] LIU Q, WANG G, GUO Q. Tire Defect Detection Based on Radon Transform[J]. Journal of Computational Information Systems, 2015, 11(21):7841-7848.
[50] 韩延彬, 王杰, 夏英杰, 等. 灰度累积投影直方图在胎冠缺陷检测中的应用[J]. 计算机应用, 2014, 34(8):2221-2226 HAN Yanbin, WANG Jie, XIA Yingjie, et al. Application of gray cumulative projection histogram in detection of tire crown crack[J]. Journal of computer applications, 2014, 34(8):2221-2226

备注/Memo

备注/Memo:
收稿日期:2018-06-06。
基金项目:国家自然科学基金项目(61701192);山东省重点研发计划项目(2017CXGC0810);山东省科技重大专项(新兴产业)项目(2015ZDXX0801A03);山东省教育科学规划“教育招生考试科学研究专设课题”(ZK1337212B008).
作者简介:逄增治,男,1995年生,硕士研究生,主要研究方向为图像处理与模式识别;郑修楠,女,1993年生,硕士研究生,主要研究方向为图像处理与模式识别;李金屏,男,1968年生,教授,博士,主要研究方向为机器视觉、图像处理、模式识别、优化算法。主持和承担国家级、省级科研10余项,企业合作项目10余项。发表学术论文近200篇。
通讯作者:李金屏.E-mail:ise_lijp@ujn.edu.cn
更新日期/Last Update: 2019-08-25