[1]刘晓燕,陈希,郭茂祖,等.一种预测miRNA与疾病关联关系的矩阵分解算法[J].智能系统学报,2018,13(06):897-904.[doi:10.11992/tis.201805043]
 LIU Xiaoyan,CHEN Xi,GUO Maozu,et al.A matrix factorization method for predicting miRNA-disease association[J].CAAI Transactions on Intelligent Systems,2018,13(06):897-904.[doi:10.11992/tis.201805043]
点击复制

一种预测miRNA与疾病关联关系的矩阵分解算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年06期
页码:
897-904
栏目:
出版日期:
2018-10-25

文章信息/Info

Title:
A matrix factorization method for predicting miRNA-disease association
作者:
刘晓燕1 陈希1 郭茂祖12 车凯1 王春宇1
1. 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001;
2. 北京建筑大学 电气与信息工程学院, 北京 100044
Author(s):
LIU Xiaoyan1 CHEN Xi1 GUO Maozu12 CHE Kai1 WANG Chunyu1
1. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
2. School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
关键词:
microRNAs疾病关联预测矩阵分解迭代最小二乘
Keywords:
microRNAsdiseaseassociation predictionmatrix factorizationiterative least squares
分类号:
TP391
DOI:
10.11992/tis.201805043
摘要:
越来越多的证据表明microRNAs(miRNAs)在生命进程中发挥着重要作用。近年来,预测miRNAs与疾病的关联关系成为一个研究热点。然而,现有的方法大多数是基于已知的miRNA-疾病关联,对没有任何关联信息的miRNA或疾病的效果是很不理想的。本文提出了一种矩阵分解的方法LMFMDA(least squares optimization matrix factorization method for mirna-disease association)对miRNAs和疾病的关联关系进行预测。LMFMDA基于miRNAs相似度矩阵、疾病相似度矩阵和miRNAs-疾病关联关系矩阵,用迭代最小二乘法求解miRNAs和疾病的表达向量,最终利用miRNAs和疾病的表达向量完成对miRNA与疾病关联关系的预测。与常规做法不同的是,我们引入了辅助的miRNAs和疾病变量,来保证在优化时能够收敛到最优解。实验结果表明,采用留一交叉验证法得到的AUC值可达0.820 6,明显优于当前其他方法,尤其在没有任何关联信息的miRNA和疾病上,LMFMDA算法比最新的算法有了极大的提升。
Abstract:
There are increasing evidences that microRNAs (miRNAs) play an important role in life processes. In recent years, predicting the association between miRNAs and diseases has become an active topic. However, most of the existing methods are based on known miRNA-disease associations and are not ideal for miRNAs and diseases without any known associations. This paper presents a least squares optimization matrix factorization method for miRNA-disease association (LMFMDA) prediction. The LMFMDA, which is based on miRNAs similarity matrix, disease similarity matrix, and miRNAs-disease relationship, uses the iterative least squares method to solve the expression vectors of miRNAs and disease and approximates the existing associations between miRNAs and diseases by the expression vector of miRNA and disease. Different from the conventional approach, we introduce auxiliary miRNAs and disease variables to ensure that these variables converge to the optimal solution during optimization. The experiments show that the AUC obtained by applying the leave-one-out cross-validation method is 0.820 6, which is obviously better than other current methods. Especially in the miRNA and disease without any associated information, the LMFMDA algorithm significantly outperforms the latest algorithm.

参考文献/References:

[1] WANG Qianghu, SUN Jie, ZHOU Meng, et al. A novel network-based method for measuring the functional relationship between gene sets[J]. Bioinformatics, 2011, 27(11):1521-1528.
[2] LV Sali, LI Yan, WANG Qianghu, et al. A novel method to quantify gene set functional association based on gene ontology[J]. Journal of the royal society interface, 2012, 9(70):1063-1072.
[3] HRISTOVSKI D, FRIEDMAN C, RINDFLESCH T C, et al. Exploiting semantic relations for literature-based discovery[J]. AMIA annual symposium proceedings, 2006, 2006:349-353.
[4] KARP X, AMBROS V. Encountering microRNAs in cell fate signaling[J]. Science, 2005, 310(5752):1288-1289.
[5] CHENG A M, BYROM M W, SHELTON J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic acids research, 2005, 33(4):1290-1297.
[6] MISKA E A. How microRNAs control cell division, differentiation and death[J]. Current opinion in genetics and development, 2005, 15(5):563-568.
[7] XU Peizhang, GUO Ming, HAY B A. MicroRNAs and the regulation of cell death[J]. Trends in genetics, 2004, 20(12):617-624.
[8] YOU Zhuhong, HUANG Zhian, ZHU Zexuan, et al. PBMDA:a novel and effective path-based computational model for miRNA-disease association prediction[J]. PLoS computational biology, 2017, 13(3):e1005455.
[9] SHI Hongbo, ZHANG Guangde, ZHOU Meng, et al. Integration of multiple genomic and phenotype data to infer novel miRNA-disease associations[J]. PLoS one, 2016, 11(2):e0148521.
[10] JIANG Qinghua, HAO Yangyang, WANG Guohua, et al. Prioritization of disease microRNAs through a human phenome-microRNAome network[J]. BMC systems biology, 2010, 4(S1):S2.
[11] JIANG Qinghua, WANG Guohua, WANG Yadong. An approach for prioritizing disease-related microRNAs based on genomic data integration[C]//Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics. Yantai, China, 2010:2270-2274.
[12] CHEN Xing, LIU Mingxi, YAN Guiying. RWRMDA:predicting novel human microRNA-disease associations[J]. Molecular biosystems, 2012, 8(10):2792-2798.
[13] CHEN Hailin, ZHANG Zuping. Similarity-based methods for potential human microRNA-disease association prediction[J]. BMC medical genomics, 2013, 6:12.
[14] SHI Hongbo, XU Juan, ZHANG Guangde, et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes[J]. BMC systems biology, 2013, 7:101.
[15] XUAN Ping, HAN Ke, GUO Maozu, et al. Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors[J]. PLoS one, 2013, 8(8):e70204.
[16] XU Chaohan, PING Yanyan, LI Xiang, et al. Prioritizing candidate disease miRNAs by integrating phenotype associations of multiple diseases with matched miRNA and mRNA expression profiles[J]. Molecular biosystems, 2014, 10(11):2800-2809.
[17] M?RK S, PLETSCHER-FRANKILD S, PALLEJA CARO A, et al. Protein-driven inference of miRNA-disease associations[J]. Bioinformatics, 2014, 30(3):392-397.
[18] PASQUIER C, GARDÈS J. Prediction of miRNA-disease associations with a vector space model[J]. Scientific reports, 2016, 6:27036.
[19] SUN Dongdong, LI Ao, FENG Huanqing, et al. NTSMDA:prediction of miRNA-disease associations by integrating network topological similarity[J]. Molecular biosystems, 2016, 12(7):2224-2232.
[20] LI Xia, XU Juan, LI Yongsheng. Prioritizing candidate disease miRNAs by topological features in the miRNA-target dysregulated network[M]//AZMI A S. Systems Biology in Cancer Research and Drug Discovery. Netherlands:Springer, 2012:289-306.
[21] JIANG Qinghua, WANG Guohua, JIN Shuilin, et al. Predicting human microRNA-disease associations based on support vector machine[J]. International journal of data mining and bioinformatics, 2013, 8(3):282-293.
[22] CHEN Xing, YAN Guiying. Semi-supervised learning for potential human microRNA-disease associations inference[J]. Scientific reports, 2014, 4:5501.
[23] SHEN Zhen, ZHANG Youhua, HAN K, et al. miRNA-disease association prediction with collaborative matrix factorization[J]. Complexity, 2017, 2017:2498957.
[24] WANG Dong, WANG Juan, LU Ming, et al. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases[J]. Bioinformatics, 2010, 26(13):1644-1650.

备注/Memo

备注/Memo:
收稿日期:2018-05-27。
基金项目:国家自然科学基金项目(61671189,61571163,61532014,91735306);国家重点研发计划课题(2016YFC0901902).
作者简介:刘晓燕,女,1963年生,副研究员,博士,主要研究方向为生物信息学、数据挖掘;陈希,男,1995年生,硕士研究生,主要研究方向为生物信息学;郭茂祖,男,1966年生,教授,博士生导师,博士,主要研究方向为机器学习、智慧城市、生物信息学。
通讯作者:郭茂祖.E-mail:guomaozu@bucea.edu.cn
更新日期/Last Update: 2018-12-25