[1]尹继亮,张楠,童向荣,等.不协调区间值决策系统的最大分布约简[J].智能系统学报,2018,13(03):469-478.[doi:10.11992/tis.201710011]
 YIN Jiliang,ZHANG Nan,TONG Xiangrong,et al.Maximum distribution reduction in inconsistent interval-valued decision systems[J].CAAI Transactions on Intelligent Systems,2018,13(03):469-478.[doi:10.11992/tis.201710011]
点击复制

不协调区间值决策系统的最大分布约简(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年03期
页码:
469-478
栏目:
出版日期:
2018-05-05

文章信息/Info

Title:
Maximum distribution reduction in inconsistent interval-valued decision systems
作者:
尹继亮12 张楠12 童向荣12 陈曼如12
1. 烟台大学 数据科学与智能技术山东省高校重点实验室, 山东 烟台 264005;
2. 烟台大学 计算机与控制工程学院, 山东 烟台 264005
Author(s):
YIN Jiliang12 ZHANG Nan12 TONG Xiangrong12 CHEN Manru12
1. Key Lab for Data Science and Intelligence Technology of Shandong Higher Education Institutes, Yantai University, Yantai 264005, China;
2. School of Computer and Control Engineering, Yantai University, Yantai 264005, China
关键词:
分布式约简最大分布约简置信度相容关系可辨识矩阵不协调区间值决策系统
Keywords:
distributed reductionmaximum distributed reductionconfidence coefficientcompatibility relationdiscernibility matrixinharmoniousinterval-valueddecision system
分类号:
TP181
DOI:
10.11992/tis.201710011
摘要:
分布式约简可以保证约简前后决策系统各规则的置信度保持不变,是属性约简的重要方法之一。最大分布式约简保持了约简前后决策系统中可信程度最大的规则不变,提取置信度较大的规则在智能决策中具有广泛的应用价值。本文在相容关系下的不协调区间值决策系统中引入最大置信度的概念,构造最大分布保持不变的可辨识矩阵,并给出基于可辨识矩阵的最大分布约简算法。分析了不协调区间值决策系统的最大分布约简算法与其它约简算法之间的关系。最后,利用UCI标准数据集进行了实验验证,实验结果表明了算法的有效性。
Abstract:
Distribution reduction is one of the important methods of attribute reduction as it can guarantee consistent confidence coefficients of all decision rules before and after reduction. Maximum distributed reduction keeps the unchanged rule with the highest confidence coefficient in the decision system, and extracting a rule with a high confidence coefficient has a wide application value. This paper introduces the concept of maximum confidence coefficient for inconsistent interval-valued decision systems based on compatibility relation and proposes a maximum distribution reduction algorithm based on discernibility matrix, whereby a discernibility matrix is constructed to keep the unchanged maximum distribution. The relationship between the maximum distribution reduction algorithm in inconsistent interval-valued decision systems and other reduction algorithms was analyzed. Experiments were performed using UCI standard data sets, and the proposed algorithm proved to be effective.

参考文献/References:

[1] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5):341-356.
[2] PAWLAK Z. Rough sets:theoretical aspects of reasoning about data[M]. Boston:Kluwer Academic Publishers, 1992.
[3] 王国胤, 姚一豫, 于洪. 粗糙集理论与应用研究综述[J]. 计算机学报, 2009, 32(7):1229-1246. WANG Guoyin, YAO Yiyu, YU Hong. A survey on rough set theory and applications[J]. Chinese journal of computers, 2009, 32(7):1229-1246.
[4] QIAN Yuhua, LIANG Jiye, PEDRYCZ W, et al. Positive approximation:an accelerator for attribute reduction in rough set theory[J]. Artificial intelligence, 2010, 174(9/10):597-618.
[5] WANG Feng, LIANG Jiye, QIAN Yuhua. Attribute reduction:A dimension incremental strategy[J]. Knowledge-based systems, 2013, 39:95-108.
[6] CHEN Hongmei, LI Tianrui, RUAN Da, et al. A rough-set based incremental approach for updating approximations under dynamic maintenance environments[J]. IEEE transactions on knowledge and data engineering, 2013, 25(2):274-284.
[7] HU Qinghua, YU Daren, XIE Zongxia. Information-preserving hybrid data reduction based on fuzzy-rough techniques[J]. Pattern recognition letters, 2006, 27(5):414-423.
[8] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[M]//S?OWI?SKI R. Intelligent Decision Support. Dordrecht:Springer, 1992, 11:331-362.
[9] KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information sciences, 1998, 112(1/2/3/4):39-49.
[10] 邓大勇, 黄厚宽, 李向军. 不一致决策系统中约简之间的比较[J]. 电子学报, 2007, 35(2):252-255. DENG Dayong, HUANG Houkuan, LI Xiangjun. Comparison of various types of reductions in inconsistent systems[J]. Acta electronica sinica, 2007, 35(2):252-255.
[11] MIAO Duoqian, ZHAO Yan, YAO Yiyu, et al. Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model[J]. Information sciences, 2009, 179(24):4140-4150.
[12] ZHOU Jie, MIAO Duoqian, PEDRYCZ W, et al. Analysis of alternative objective functions for attribute reduction in complete decision tables[J]. Soft computing, 2011, 15(8):1601-1616.
[13] 张文修, 米据生, 吴伟志. 不协调目标信息系统的知识约简[J]. 计算机学报, 2003, 26(1):12-18. ZHANG Wenxiu, MI Jusheng, WU Weizhi. Knowledge reductions in inconsistent information systems[J]. Chinese journal of computers, 2003, 26(1):12-18.
[14] 徐伟华, 张文修. 基于优势关系下不协调目标信息系统的分布约简[J]. 模糊系统与数学, 2007, 21(4):124-131. XU Weihua, ZHANG Wenxiu. Distribution reduction in inconsistent information systems based on dominance relations[J]. Fuzzy systems and mathematics, 2007, 21(4):124-131.
[15] 张楠, 苗夺谦, 岳晓冬. 区间值信息系统的知识约简[J]. 计算机研究与发展, 2010, 47(8):1362-1371. ZHANG Nan, MIAO Duoqian, YUE Xiaodong. Approaches to knowledge reduction in interval-valued information systems[J]. Journal of computer research and development, 2010, 47(8):1362-1371.
[16] 张楠, 许鑫, 童向荣, 等. 不协调区间值决策系统的知识约简[J]. 小型微型计算机系统, 2017, 38(7):1585-1589. ZHANG Nan, XU Xin, TONG Xiangrong, et al. Knowledge reduction in inconsistent interval-valued decision systems[J]. Journal of Chinese computer systems, 2017, 38(7):1585-1589.
[17] 张楠, 许鑫, 童向荣, 等. 不协调区间值决策系统的分布约简[J]. 计算机科学, 2017, 44(9):78-82, 104. ZHANG Nan, XU Xin, TONG Xiangrong, et al. Distribution reduction in inconsistent interval-valued decision systems[J]. Computer science, 2017, 44(9):78-82, 104.
[18] 刘鹏惠, 陈子春, 秦克云. 区间值信息系统的决策属性约简[J]. 计算机工程与应用, 2009, 45(28):148-150, 229. LIU Penghui, CHEN Zichun, QIN Keyun. Decision attribute reduction of interval-valued information system[J]. Computer engineering and applications, 2009, 45(28):148-150, 229.
[19] ZHANG Xiao, MEI Changlin, CHEN Degang, et al. Multi-confidence rule acquisition and confidence-preserved attribute reduction in interval-valued decision systems[J]. International journal of approximate reasoning, 2014, 55(8):1787-1804.
[20] 史德容, 徐伟华. 区间值模糊决策序信息系统的分布约简[J]. 计算机科学与探索, 2017, 11(4):652-658. SHI Derong, XU Weihua. Distribution reduction in interval-valued fuzzy decision ordered information systems[J]. Journal of frontiers of computer science and technology, 2017, 11(4):652-658.

备注/Memo

备注/Memo:
收稿日期:2017-10-16。
基金项目:国家自然科学基金项目(61403329,61572418,61702439,61572419,61502410);山东省自然科学基金项目(ZR2016FM42);烟台大学研究生科技创新基金项目(YDZD1807).
作者简介:尹继亮,男,1994年生,硕士研究生,主要研究方向为粗糙集、数据挖掘与机器学习;张楠,男,1979年生,讲师,主要研究方向为粗糙集、认知信息学与人工智能;童向荣,男,1975年生,教授,主要研究方向为多Agent系统、分布式人工智能与数据挖掘。
通讯作者:张楠.E-mail:zhangnan0851@163.com.
更新日期/Last Update: 2018-06-25