[1]顾雨迪,狄岚.分层演化趋向行为的网络舆情传播模型[J].智能系统学报,2018,13(05):700-706.[doi:10.11992/tis.201705009]
 GU Yudi,DI Lan.Internet public opinion dissemination model of hierarchical evolutionary behavior[J].CAAI Transactions on Intelligent Systems,2018,13(05):700-706.[doi:10.11992/tis.201705009]
点击复制

分层演化趋向行为的网络舆情传播模型(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年05期
页码:
700-706
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Internet public opinion dissemination model of hierarchical evolutionary behavior
作者:
顾雨迪1 狄岚2
1. 江南大学 信息化建设与管理中心, 江苏 无锡 214122;
2. 江南大学 数字媒体学院, 江苏 无锡 214122
Author(s):
GU Yudi1 DI Lan2
1. Center of Information Construction and Management, Jiangnan University, Wuxi 214122, China;
2. School of Digital Media, Jiangnan University, Wuxi 214122, China
关键词:
网络舆情媒体干预传播模型分层演化动力系统数值模拟转移概率人群密度
Keywords:
Internet public opinionimpact of mediadissemination modelhierarchical evolutionarydynamic systemnumerical simulationtransfer probabilitycrowd density
分类号:
TP391
DOI:
10.11992/tis.201705009
摘要:
通过构建带有分层行为演化趋向的舆情传播模型,研究了媒体作用下分层行为舆情演变的内在规律。在参考疾病传播模型SIR(susceptible infected recovered)和带媒体干预的SIaIbR(susceptible infected-a infected-b recovered)模型基础上,提出了带有媒体干预的具有分层演化趋向行为的舆情演变模型(SI)3R,与SIR模型不同的是(SI)3R模型引入了群体分层这一概念,并且在演化过程中处于群体不同分层中的个体带有不同的演化趋势。通过对不同层次中个体的影响,媒体能够发挥更有效的作用。给出了分层演化群体模型及其动力学方程,通过数值求解,模拟了分层媒体作用对传播过程的影响以及初始分层密度对传播过程的影响。
Abstract:
By constructing a trend model of Internet public opinion dissemination with hierarchical evolution, the internal rules of the hierarchical behavior evolution of public opinion under the influence of media is studied. Based on the susceptible-infected-recovered (SIR) epidemic model and the susceptible infected-a infected-b recovered (SIaIbR) model, this paper proposes a public opinion dissemination model (SI)3R, which has an hierarchical behavior evolution trend and is influenced by the media. The (SI)3R model differs from the SIR model, being that it introduces the group stratification concept, and in the evolution process, the individuals have different evolutionary trends at the different layers of the group. Though the media influences the individuals in different levels, it can play a more effective role. This paper presented a hierarchical evolutionary group model and its dynamics equation. By numerical calculations, the effect of layered media on the communication process, as well as the influence of initial layered density on the propagation process are simulated.

参考文献/References:

[1] 朱恒民, 刘凯, 卢子芳. 媒体作用下互联网舆情话题传播模型研究[J]. 现代图书情报技术, 2013(3):45-50 ZHU Hengmin, LIU Kai, LU Zifang. Study on topic propagation model of Internet public opinion under the influence of the media[J]. New technology of library and information service, 2013(3):45-50
[2] 张立凡, 赵凯. 媒体干预下带有讨论机制的网络舆情传播模型研究[J]. 现代图书情报技术, 2015(11):60-67 ZHANG Lifan, ZHAO Kai. Study on the Internet public opinion dissemination model with discussion under the effect of media[J]. New technology of library and information service, 2015(11):60-67
[3] GRUHL D, GUHA R, LIBEN-NOWELL D, et al. Information diffusion through blogspace[C]//Proceedings of the 13th International Conference on World Wide Web. New York, USA, 2004:491-501.
[4] LESKOVEC J, MCGLOHON M, FALOUTSOS C, et al. Patterns of cascading behavior in large blog graphs[C]//Proceedings of the 2007 SIAM International Conference on Data Mining. Minneapolis, Minnesota, New York, USA, 2007:551-556.
[5] ARTALEJO J R, ECONOMOU A, LOPEZ-HERRERO M J. The stochastic SEIR model before extinction:computational approaches[J]. Applied mathematics and computation, 2015, 265:1026-1043.
[6] CAI Yongli, KANG Yun, BANERJEE M, et al. A stochastic SIRS epidemic model with infectious force under intervention strategies[J]. Journal of differential equations, 2015, 259(12):7463-7502.
[7] LI Weihua, TANG Shaoting, FANG Wenyi, et al. How multiple social networks affect user awareness:the information diffusion process in multiplex networks[J]. Physical review E, statistical, nonlinear, and soft matter physics, 2015, 92(4):042810.
[8] SUDBURY A. The proportion of the population never hearing a Rumour[J]. Journal of applied probability, 1985, 22(2):443-446.
[9] 顾亦然, 夏玲玲. 在线社交网络中谣言的传播与抑制[J]. 物理学报, 2012, 61(23):544-550 GU Yiran, XIA Lingling. The propagation and inhibition of rumors in online social network[J]. Acta physica sinica, 2012, 61(23):544-550
[10] 钱颖, 张楠, 赵来军, 等. 微博舆情传播规律研究[J]. 情报学报, 2012, 31(12):1299-1304 QIAN Ying, ZHANG Nan, ZHAO Laijun, et al. The spread of public sentiment on micro-blogging under emergencies[J]. Journal of the China society for scientific and technical information, 2012, 31(12):1299-1304
[11] XU Ruzhi, LI Heli, Xing Changming. Research on information dissemination model for social networking services[J]. International journal of computer science and application, 2013, 2(1):1-6.
[12] 李林, 孙军华. 基于社会网络冲突信息传播的群体特征[J]. 系统工程理论与实践, 2014, 34(1):207-214 LI Lin, SUN Junhua. Population characteristics based on conflict information spreading on social network[J]. System engineering-theory & practice, 2014, 34(1):207-214
[13] 夏承遗, 刘忠信, 陈增强. 复杂网络上的传播动力学及其新进展[J]. 智能系统学报, 2009, 4(5):392-397 XIA Chengyi, LIU Zhongxin, CHEN Zengqiang. Transmission dynamics in complex networks[J]. CAAI transactions on intelligent systems, 2009, 4(5):392-397
[14] 蒋乐进. 论网络舆论形成与作用[J]. 北京理工大学学报:社会科学版, 2006, 8(4):10-14 JIANG Lejin. How network public opinion formation and its effect[J]. Journal of Beijing institute of technology:social sciences edition, 2006, 8(4):10-14
[15] 陈波, 于泠, 刘君亭, 等. 泛在媒体环境下的网络舆情传播控制模型[J]. 系统工程理论与实践, 2011, 31(11):2140-2150 CHEN Bo, YU Ling, LIU Junting, et al. Dissemination and control model of Internet public opinion in the ubiquitous media environments[J]. Systems engineering -theory and practice, 2011, 31(11):2140-2150
[16] CROKIDAKIS N. Effects of mass media on opinion spreading in the Sznajd sociophysics model[J]. Physica A:statistical mechanics and its applications, 2012, 391(4):1729-1734.
[17] LI Dandan, MA Jing. How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks[J]. Physica A:statistical mechanics and its applications, 2017, 469:284-292.
[18] BONZANI I, CUMIN L M G. Modelling and simulations of multilane traffic flow by kinetic theory methods[J]. Computers and mathematics with applications, 2008, 56(9):2418-2428.

备注/Memo

备注/Memo:
收稿日期:2017-05-09。
基金项目:江苏省“六大人才高峰”高层次人才项目(DZXX-028).
作者简介:顾雨迪,女,1990年生,硕士研究生,主要研究方向为信息安全。参与省级科研项目2项;狄岚,女,1965年生,副教授,主要研究方向为信息安全、网络舆情。主持省级科研项目2项,获得省级自然科学学术1项。发表学术论文40余篇。
通讯作者:狄岚.E-mail:dilan126@163.com.
更新日期/Last Update: 2018-10-25