[1]施建中,李荣,杨勇.一类区间二型模糊PI控制器设计算法[J].智能系统学报,2018,13(05):836-842.[doi:10.11992/tis.201703039]
 SHI Jianzhong,LI Rong,YANG Yong.An interval type 2 fuzzy PI controller design algorithm[J].CAAI Transactions on Intelligent Systems,2018,13(05):836-842.[doi:10.11992/tis.201703039]
点击复制

一类区间二型模糊PI控制器设计算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年05期
页码:
836-842
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
An interval type 2 fuzzy PI controller design algorithm
作者:
施建中 李荣 杨勇
南京工程学院 能源与动力工程学院, 江苏 南京 211167
Author(s):
SHI Jianzhong LI Rong YANG Yong
School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
关键词:
二型模糊集合KM降阶二型模糊控制二型模糊PI不确定域动态解模糊化直接降阶增量式PI
Keywords:
type-2 fuzzy setsKM-type reductiontype-2 fuzzy controltype-2 fuzzy PIuncertain domaindynamic defuzzificationdirect reductionincremental PI
分类号:
TP273.4
DOI:
10.11992/tis.201703039
摘要:
区间二型模糊控制器在处理不确定性方面优于传统的模糊控制器,但带来的一个问题就是区间二型模糊控制器需要降阶过程。常用的KM等迭代式降阶算法效率低下,难以用于实时性较高的场合。本文利用直接降阶算法和动态解模糊化算法,提出了一类区间二型模糊PI控制器设计算法。该算法在降阶过程中考虑偏差和偏差变化量对控制器输出的影响,避免了KM等迭代式降阶过程。通过二阶迟延对象以及一个非线性对象的仿真实验表明,本文算法能够有效降低系统超调,降低系统的稳态时间,控制器在设定值附近的输出更为平滑。
Abstract:
The interval type-2 fuzzy controllers outperform their type-1 counterparts in processing uncertainty; however, the type-2 fuzzy controller needs to be reduced, and the commonly used iterative reduction algorithms such as Karnik-Mendel (KM) algorithm are inefficient and difficult to use in real-time situations. In this paper, an interval type-2 fuzzy PI controller algorithm that combines the dynamic defuzzification method and direct reduction algorithm is proposed. The algorithm considers the effects of error and error variation on the controller output during reduction, thus avoiding iterative reduction such as in KM. Simulations of a second-order delay object and nonlinear object show that the proposed algorithm can effectively suppress the system overshoot and reduce the time of the system to reach steady state; furthermore, the controller outputs around the set value are smoother.

参考文献/References:

[1] ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning-I[J]. Information sciences, 1975, 8(3):199-249.
[2] MENDEL J M. Uncertain rule-based fuzzy logic systems:introduction and new directions[M]. Upper-Saddle River, NJ:Prentice Hall, 2001.
[3] KARNIK N N, MENDEL J M. Operations on type-2 fuzzy sets[J]. Fuzzy sets and systems, 2001, 122(2):327-348.
[4] WU Dongrui, MENDEL J M. Enhanced Karnik-Mendel algorithms[J]. IEEE transactions on fuzzy systems, 2009, 17(4):923-934.
[5] KARNIK N N, MENDEL J M, LIANG Qilian. Type-2 fuzzy logic systems[J]. IEEE transactions on fuzzy systems, 1999, 7(6):643-658.
[6] LIANG Qilian, MENDEL J M. Interval type-2 fuzzy logic systems:theory and design[J]. IEEE transactions on fuzzy systems, 2000, 8(5):535-550.
[7] MENDEL J M, JOHN R I, LIU Feilong. Interval type-2 fuzzy logic systems made simple[J]. IEEE transactions on fuzzy systems, 2006, 14(6):808-821.
[8] CASTILLO O, MELIN P. A review on the design and optimization of interval type-2 fuzzy controllers[J]. Applied soft computing, 2012, 12(4):1267-1278.
[9] DERELI T, BAYKASOGLU A, ALTUN K, et al. Industrial applications of type-2 fuzzy sets and systems:a concise review[J]. Computers in industry, 2011, 62(2):125-137.
[10] MELGAREJO M. A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set[C]//Annual Meeting of the North American Fuzzy Information Processing Society. California, USA, 2007:190-194.
[11] WU Dongrui, NIE Maowen. Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems[C]//Proceedings of 2011 IEEE International Conference on Fuzzy Systems. Taipei, China, 2011:2131-2138.
[12] 胡怀中, 赵戈, 杨华南. 一种区间型二型模糊集重心的快速解法[J]. 控制与决策, 2010, 25(4):637- 640 HU Huaizhong, ZHAO Ge, YANG Hua’nan. Fast algorithm to calculate generalized centroid of interval type-2 fuzzy set[J]. Control and decision, 2010, 25(4):637-640
[13] WU Dongrui. Approaches for reducing the computational cost of interval type-2 fuzzy logic systems:overview and comparisons[J]. IEEE transactions on fuzzy systems, 2013, 21(1):80-99.
[14] WU Dongrui. On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers[J]. IEEE transactions on fuzzy systems, 2012, 20(5):832-848.
[15] NIE Maowen, TAN W W. Analytical structure and characteristics of symmetric Karnik-Mendel type-reduced interval type-2 fuzzy PI and PD controllers[J]. IEEE transactions on fuzzy systems, 2012, 20(3):416-430.
[16] ZHOU Haibo, YING Hao. A method for deriving the analytical structure of a broad class of typical interval type-2 mamdani fuzzy controllers[J]. IEEE transactions on fuzzy systems, 2013, 21(3):447-458.
[17] 雷宾宾, 保宏, 许谦. 区间二型模糊PI/PD控制器设计与结构分析[J]. 电机与控制学报, 2016, 20(6):50-62 LEI Binbin, BAO Hong, XU Qian. Design and structural analysis of interval Type-2 fuzzy PI/PD controller[J]. Electric machines and control, 2016, 20(6):50-62
[18] 龙祖强, 许岳兵, 李龙. 一类乘积型区间二型模糊控制器的解析结构[J]. 控制理论与应用, 2016, 33(7):929-935 LONG Zuqiang, XU Yuebing, LI Long. Analytical structure of a class of product and interval-type-2 fuzzy controllers[J]. Control theory and applications, 2016, 33(7):929-935
[19] ULU C, GÜZELKAYA M, EKSIN I. A dynamic defuzzification method for interval type-2 fuzzy logic controllers[C]//Proceedings of 2011 IEEE International Conference on Mechatronics. Istanbul, Turkey, 2011:318-323.
[20] MIZUMOTO M. Realization of PID controls by fuzzy control methods[J]. Fuzzy sets and systems, 1995, 70(2/3):171-182.
[21] WU Dongrui, TAN W W. Interval type-2 fuzzy PI controllers:why they are more robust[C]//Proceedings of 2010 IEEE International Conference on Granular Computing. San Jose, California, USA, 2010:802-807.
[22] NIE Maowen, TAN W W. Towards an efficient type-reduction method for interval type-2 fuzzy logic systems[C]//Proceedings of 2008 IEEE International Conference on Fuzzy Systems. Hong Kong, China, 2008:1425-1432.

备注/Memo

备注/Memo:
收稿日期:2017-03-26。
基金项目:南京工程学院校级科研基金项目(YKJ201523);南京工程学院青年基金项目(QKJA201504).
作者简介:施建中,男,1984年生,讲师,博士,主要研究方向为二型模糊逻辑系统辨识与控制;李荣,男,1987年生,讲师,博士研究生,主要研究方向为智能优化控制;杨勇,女,1986年生,实验师,博士研究生,主要研究方向为槽式太阳能热发电系统建模与优化控制。
通讯作者:施建中.E-mail:sjz-ha@163.com.
更新日期/Last Update: 2018-10-25