[1]张铭.城市轨道交通线网数据中心与评估决策平台[J].智能系统学报,2018,13(03):458-468.[doi:10.11992/tis.201612005]
 ZHANG Ming.A platform for a data center and decision making in urban rail transit[J].CAAI Transactions on Intelligent Systems,2018,13(03):458-468.[doi:10.11992/tis.201612005]
点击复制

城市轨道交通线网数据中心与评估决策平台(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年03期
页码:
458-468
栏目:
出版日期:
2018-05-05

文章信息/Info

Title:
A platform for a data center and decision making in urban rail transit
作者:
张铭
中国铁道科学研究院 电子计算技术研究所, 北京 100081
Author(s):
ZHANG Ming
China Institute of Computing Technologies, China Academy of Railway Sciences, Beijing 100081, China
关键词:
城市轨道交通数据中心网络化运营数据仓库运营评估数据挖掘决策指标
Keywords:
urban rail transitdata centernetwork operationdata warehouseoperational evaluationdata miningdecision makingindex
分类号:
TP319
DOI:
10.11992/tis.201612005
摘要:
在分析网络化运营条件下大规模数据特征的基础上,根据业务系统的数据融合需求,提出城市轨道交通数据中心平台的分层框架和功能定位。探讨了线网管理的数据结构体系、数据仓库的递阶逻辑建模、面向运营业务决策的应用集市等构建方法,并以线网客流特征识别的业务应用为对象,提出了数据集市的关联规则挖掘原理、预测立方体在贯通多类运营评估应用的计算方法。结合某城市轨道交通数据中心建设案例,描述了基于数据仓库的搭建过程及相关业务的调用逻辑,表明了线网数据管理对跨业务系统融合数据的意义,有效地提高了运营管理效率。
Abstract:
Based on large datasets for network operations in urban rail transit (URT), an approach on the multilayered framework and functions of an urban rail transit data center is presented. Critical network data management technologies are also discussed, including united data structures, hierarchical logical modeling of data warehouses, decision making, and passenger behavior recognition. Then, an algorithm is proposed based on data association rules and mining principles of forecast cube for evaluation purposes. Using a URT data center as an example, it describes data warehousing and related operations and points to the value of network data management in business-systems integration and in operational efficiency.

参考文献/References:

[1] 徐俊刚, 裴莹. 数据ETL研究综述[J]. 计算机科学, 2011, 38(4):15-20. XU Jungang, PEI Ying. Overview of data extraction, transformation and loading[J]. Computer science, 2011, 38(4):15-20.
[2] 陈慧萍, 陈岚峰, 王建东. 大型数据仓库实现技术的研究[J]. 计算机工程与设计, 2006, 27(21):3956-3958, 3961. CHEN Huiping, CHEN Lanfeng, WANG Jiandong. Research on issues in developing large data warehouses[J]. Computer engineering and design, 2006, 27(21):3956-3958, 3961.
[3] 胡侃, 夏绍玮. 基于大型数据仓库的数据采掘:研究综述[J]. 软件学报, 1998, 9(1):53-63. HU Kan, XIA Shaowei. Large data warehouse-based data Mining:a survey[J]. Journal of software, 1998, 9(1):53-63.
[4] 王德文. 基于云计算的电力数据中心基础架构及其关键技术[J]. 电力系统自动化, 2012, 36(11):67-71, 107. WANG Dewen. Basic framework and key technology for a new generation of data center in electric power corporation based on cloud computation[J]. Automation of electric power systems, 2012, 36(11):67-71, 107.
[5] 汪祖云. 交通数据中心总体架构与数据共享交换平台的设计研究[J]. 交通运输系统工程与信息, 2008, 8(3):23-28. WANG Zuyun. Framework and data share platform of transportation data center[J]. Journal of transportation systems engineering and information technology, 2008, 8(3):23-28.
[6] 罗亮, 吴文峻, 张飞. 面向云计算数据中心的能耗建模方法[J]. 软件学报, 2014, 25(7):1371-1387. LUO Liang, WU Wenjun, ZHANG Fei. Energy modeling based on cloud data center[J]. Journal of software, 2014, 25(7):1371-1387.
[7] 张彧锋, 韩泉叶. 城市轨道交通线网运营安全保障平台的设计与仿真实现[J]. 城市轨道交通研究, 2014, 17(12):33-38. ZHANG Yufeng, HAN Quanye. Design and simulation of network operation security platform in urban rail transit[J]. Urban mass transit, 2014, 17(12):33-38.
[8] 梁艳平, 刘仍奎, 芮小平, 等. 轨道交通基础数据库元数据内容体系研究[J]. 交通运输系统工程与信息, 2005, 5(3):61-64. LIANG Yanping, LIU Rengkui, RUI Xiaoping, et al. A metadata content system of rail transit fundamental database[J]. Journal of transportation systems engineering and information technology, 2005, 5(3):61-64.
[9] 赵金楼, 成俊会, 岳晓东. 基于贝叶斯网络的海洋工程装备故障诊断模型[J]. 哈尔滨工程大学学报, 2014, 35(10):1288-1293. ZHAO Jinlou, CHENG Junhui, YUE Xiaodong. Fault diagnosis model of marine engineering equipment based on Bayesian networks[J]. Journal of Harbin engineering university, 2014, 35(10):1288-1293.
[10] 张天瑞, 于天彪, 赵海峰, 等. 数据挖掘技术在全断面掘进机故障诊断中的应用[J]. 东北大学学报:自然科学版, 2015, 36(4):527-531, 541. ZHANG Tianrui, YU Tianbiao, ZHAO Haifeng, et al. Application of data mining technology in fault diagnosis of tunnel boring machine[J]. Journal of northeastern university:natural science, 2015, 36(4):527-531, 541.
[11] 杨承东, 徐余明. 基于综合监控系统的线网指挥中心构建方案研究[J]. 城市轨道交通研究, 2013, 16(10):25-29. YANG Chengdong, XU Yuming. Structural scheme of traffic command center based on intergraded supervisor control system[J]. Urban mass transit, 2013, 16(10):25-29.
[12] LODHA A, GUMASTE A, WANG Jianping, et al. CAVALIER architecture for metro data center networking[C]//Proceedings of the 5th International Conference on Broadband Communications, Networks and Systems. London, Britain, 2008:169-174.
[13] 张铭, 王富章, 程超. 城市轨道交通设备故障聚类与贝叶斯网络预警[J]. 计算机工程与应用, 2016, 52(11):259-264. ZHANG Ming, WANG Fuzhang, CHENG Chao. Equipment fault clustering and Bayesian network pre-alarm of urban rail transit[J]. Computer engineering and applications, 2016, 52(11):259-264.
[14] 冷彪, 赵文远. 基于客流数据的区域出行特征聚类[J]. 计算机研究与发展, 2014, 51(12):2653-2662. LENG Biao, ZHAO Wenyuan. Region ridership characteristic clustering using passenger flow data[J]. Journal of computer research and development, 2014, 51(12):2653-2662.
[15] ITOH M, YOKOYAMA D, TOYODA M, et al. Visual fusion of mega-city big data:an application to traffic and tweets data analysis of Metro passengers[C]//Proceedings of 2014 IEEE International Conference on Big Data. Washington, USA, 2014:431-440.
[16] 张文燚, 项连志, 王小芳. 支持分布式大数据应用建模的模型理论[J]. 哈尔滨工程大学学报, 2015, 36(5):671-677. ZHANG Wenyi, XIANG Lianzhi, WANG Xiaofang. A model theory for distributed application modeling on big data[J]. Journal of Harbin engineering university, 2015, 36(5):671-677.
[17] 石庄彬, 陆文学, 张宁. 数据挖掘技术在轨道交通AFC系统中的应用[J]. 都市快轨交通, 2015, 28(1):23-27. SHI Zhuangbin, LU Wenxue, ZHANG Ning. Application of data mining for urban rail transit automatic fare collection[J]. Urban rapid rail transit, 2015, 28(1):23-27.
[18] SAMADI P, WEN Ke, XU Junjie, et al. Software-defined optical network for metro-scale geographically distributed data centers[J]. Optics express, 2016, 24(11):12310-12320.
[19] 沈斌. 复杂网络与数据挖掘:研究范式的比较和整合[J]. 复杂系统与复杂性科学, 2014, 11(1):48-52, 59. SHEN Bin. Comparative study and integration of research paradigms of complex networks and data mining[J]. Complex systems and complexity science, 2014, 11(1):48-52, 59.
[20] 李夏苗, 黄桂章, 汤杰. 基于OD反推模型预测客运通道客流量[J]. 铁道学报, 2008, 30(6):7-12. LI Xiamiao, HUANG Guizhang, TANG Jie. Passenger flow forecasting based on OD-matrix estimation model[J]. Journal of the China railway society, 2008, 30(6):7-12.
[21] 李明, 王海霞. 轨道交通车站客流预测模型研究[J]. 铁道工程学报, 2009, 26(3):67-72. LI Ming, WANG Haixia. Study on the model for predicting the passenger volume of rail communication station[J]. Journal of railway engineering society, 2009, 26(3):67-72.

相似文献/References:

[1]杨 力,许泽明,曹谢东,等.基于MAS的U-B-M三层总体框架下信息集成平台的研究与应用[J].智能系统学报,2007,2(05):58.
 YANG Li,XU Ze-ming,CAO Xie-dong,et al.Integrating diverse information platforms with MASbased UBM threelayer frameworks[J].CAAI Transactions on Intelligent Systems,2007,2(03):58.

备注/Memo

备注/Memo:
收稿日期:2016-12-05。
基金项目:国家自然科学基金项目(U1334210);北京市重点科技支撑计划项目(Z151100001315002).
作者简介:张铭,女,1979年生,副研究员,博士,CCF会员,主要研究方向为轨道交通智能系统工程、安全与应急规划。主持和参与国家自然科学基金、863计划、国家科技支撑计划、住房与城乡建设部科技计划示范工程、北京市重大科技计划、企业联合等多项课题,发表学术论文30余篇。
通讯作者:张铭.E-mail:zm_zhangming@hotmail.com.
更新日期/Last Update: 2018-06-25