[1]易磊,潘志松,邱俊洋,等.在线学习的大规模网络流量分类研究[J].智能系统学报编辑部,2016,11(3):318-327.[doi:10.11992/tis.201603033]
 YI Lei,PAN Zhisong,QIU Junyang,et al.Large-scale network traffic classification based on online learning[J].CAAI Transactions on Intelligent Systems,2016,11(3):318-327.[doi:10.11992/tis.201603033]
点击复制

在线学习的大规模网络流量分类研究

参考文献/References:
[1] ZHANG Jun, CHEN Xiao, XIANG Yang, et al. Robust network traffic classification[J]. IEEE/ACM transactions on networking, 2015, 23(4): 1257-1270.
[2] NGUYEN T T T, ARMITAGE G. A survey of techniques for internet traffic classification using machine learning[J]. IEEE communications surveys & tutorials, 2008, 10(4): 56-76.
[3] 陶卿, 高乾坤, 姜纪远, 等. 稀疏学习优化问题的求解综述[J]. 软件学报, 2013, 24(11): 2498-2507. TAO Qing, GAO Qiankun, JIANG Jiyuan, et al. Survey of solving the optimization problems for sparse learning[J]. Journal of software, 2013, 24(11): 2498-2507.
[4] MOORE A W, ZUEV D. Internet traffic classification using bayesian analysis techniques[J]. ACM sigmetrics performance evaluation review, 2005, 33(1): 50-60.
[5] AULD T, MOORE A W, GULL S F. Bayesian neural networks for internet traffic classification[J]. IEEE transactions on neural networks, 2007, 18(1): 223-239.
[6] ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification[J]. Computer networks, 2009, 53(14): 2476-2490.
[7] SCHATZMANN D, MüHLBAUER W, SPYROPOULOS T, et al. Digging into HTTPS: flow-based classification of webmail traffic[C]//Proceedings of the 10th ACM SIGCOMM conference on internet measurement. New York, NY, USA, 2010: 322-327.
[8] WANG Yu, YU Shunzheng. Supervised learning real-time traffic classifiers[J]. Journal of networks, 2009, 4(7): 622-629.
[9] NGUYEN T T T, ARMITAGE G, BRANCH P, et al. Timely and continuous machine-learning-based classification for interactive IP traffic[J]. IEEE/ACM transactions on networking, 2012, 20(6): 1880-1894.
[10] ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning[C]//Proceedings of the IEEE conference on local computer networks 30th anniversary. Sydney, NSW, Australia, 2005: 250-257.
[11] ERMAN J, ARLITT M, MAHANTI A. Traffic classification using clustering algorithms[C]//Proceedings of the 2006 SIGCOMM workshop on mining network data. New York, NY, USA, 2006: 281-286.
[12] ROSENBLATT F. The perception: a probabilistic model for information storage and organization in the brain[J]. Psychological review, 1958, 65(6): 386-408.
[13] CRAMMER K, DEKEL O, KESHET J, et al. Online passive-aggressive algorithms[J]. Journal of machine learning research, 2006, 7(3): 551-585.
[14] CESA-BIANCHI N, CONCONI A, GENTILE C. A second-order perceptron algorithm[J]. SIAM journal on computing, 2005, 34(3): 640-668.
[15] CRAMMER K, DREDZE M, PEREIRA F. Exact convex confidence-weighted learning[C]//Advances in neural information processing systems 21. Mountain View, CA, USA, 2008: 345-352.
[16] CRAMMER K, KULESZA A, DREDZE M. Adaptive regularization of weight vectors[J]. Machine learning, 2013, 91(2): 155-187.
[17] WANG Jialei, ZHAO Peilin, HOI S C H. Exact soft confidence-weighted learning[C]//Proceedings of the 29th international conference on machine learning. Edinburgh, Scotland, UK, 2012.
[18] ZINKEVICH M. Online convex programming and generalized infinitesimal gradient ascent[C]//Proceedings of the international conference on machine learning. Washington, DC, USA, 2003: 928-936.
[19] CESA-BIANCHI N, CONCONI A, GENTILE C. On the generalization ability of on-line learning algorithms[J]. IEEE transactions on information theory, 2004, 50(9): 2050-2057.
[20] HOI S C H, WANG Jialei, ZHAO Peilin. LIBOL: a library for online learning algorithms[J]. Journal of machine learning research, 2014, 15(1): 495-499.
[21] LU Jing, HOI S C H, WANG Jialei, et al. Large scale online kernel learning[J]. Journal of machine learning research, 2014, 1: 1-48.
相似文献/References:
[1]富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报编辑部,2007,2(4):86.
 FU Chun-yan,GE Mao-song.A data stream classification methods adaptive to concept drift[J].CAAI Transactions on Intelligent Systems,2007,2(3):86.
[2]栾寻,高尉.优化AUC两遍学习算法[J].智能系统学报编辑部,2018,13(3):395.[doi:10.11992/tis.201706079]
 LUAN Xun,GAO Wei.Two-pass AUC optimization[J].CAAI Transactions on Intelligent Systems,2018,13(3):395.[doi:10.11992/tis.201706079]
[3]左鹏玉,周洁,王士同.面对类别不平衡的增量在线序列极限学习机[J].智能系统学报编辑部,2020,15(3):520.[doi:10.11992/tis.201904040]
 ZUO Pengyu,ZHOU Jie,WANG Shitong.Incremental online sequential extreme learning machine for imbalanced data[J].CAAI Transactions on Intelligent Systems,2020,15(3):520.[doi:10.11992/tis.201904040]
[4]周晶雨,王士同.对不平衡目标域的多源在线迁移学习[J].智能系统学报编辑部,2022,17(2):248.[doi:10.11992/tis.202012019]
 ZHOU Jingyu,WANG Shitong.Multi-source online transfer learning for imbalanced target domains[J].CAAI Transactions on Intelligent Systems,2022,17(3):248.[doi:10.11992/tis.202012019]

备注/Memo

收稿日期:2016-3-18;改回日期:。
基金项目:国家自然科学基金项目(61473149).
作者简介:易磊,男,1991年生,硕士研究生,主要研究方向为机器学习及其在大规模网络流量分类中的应用。潘志松,男,1973年生,教授,博士生导师,江苏省计算机学会模式识别与人工智能专委会委员,主要研究方向为模式识别、机器学习、网络安全。主持国家科研项目多项,发表学术论文30余篇。邱俊洋,男,1989年生,博士研究生,主要研究方向为机器学习及其在大规模网络数据流异常检测中的应用,发表学术论文2篇。
通讯作者:易磊.E-mail:yileinjut@163.com.

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134