[1]王跃,杨燕,王红军.一种基于少量标签的改进迁移模糊聚类[J].智能系统学报编辑部,2016,11(3):310-317.[doi:10.11992/tis.201603046]
 WANG Yue,YANG Yan,WANG Hongjun.An improved transfer fuzzy clustering with few labels[J].CAAI Transactions on Intelligent Systems,2016,11(3):310-317.[doi:10.11992/tis.201603046]
点击复制

一种基于少量标签的改进迁移模糊聚类

参考文献/References:
[1] 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39. ZHUANG Fuzhen, LUO Ping, HE Qing, et al. Survey on transfer learning research[J]. Journal of software, 2015, 26(1): 26-39.
[2] WEI Fengmei, ZHANG Jianpei, CHU Yan, et al. FSFP: transfer learning from long texts to the short[J]. Applied mathematics and information sciences, 2014, 8(4): 2033-2040.
[3] DAI Wenyuan, XUE Guirong, YANG Qiang, et al. Co-clustering based classification for out-of-domain documents[C]//Proceedings of the 13th ACM SIGKDD Tinternational Conference on Knowledge Discovery and Data Mining. San Jose, California, USA, 2007: 210-219.
[4] DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Self-taught clustering[C]//Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland,, 2008: 200-207.
[5] SAMANTA S, SELVAN A T, DAS S. Cross-domain clustering performed by transfer of knowledge across domains[C]//Proceedings of the 4th National Conference on Pattern Recognition, Image Processing and Graphics (NCVPRIPG). Jodhpur, India, 2013: 1-4.
[6] DAI Wenyuan, XUE Guirong, YANG Qiang, et al. Transferring naive Bayes classifiers for text classification[C]//Proceedings of the 22nd National Conference on Artificial Intelligence. Vancourver, British Columbia, Canada, 2007, 1: 540-545.
[7] LIAO Xuejun, XUE Ya, CARIN L. Logistic regression with an auxiliary data source[C]//Proceedings of the 22nd International Conference on Machine Learning. New York, NY, USA, 2005: 505-512.
[8] DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine Learning. Corvallis, Oregon, USA, 2007: 193-200.
[9] LUO Ping, ZHUANG Fuzhen, XIONG Hui, et al. Transfer learning from multiple source domains via consensus regularization[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management. Napa Valley, California, USA, 2008: 103-112.
[10] DUAN Lixin, TSANG I W, XU Dong, et al. Domain adaptation from multiple sources via auxiliary classifiers[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal, Canada,, 2009: 289-296.
[11] 蒋亦樟, 邓赵红, 王骏, 等. 基于知识利用的迁移学习一般化增强模糊划分聚类算法[J]. 模式识别与人工智能, 2013, 26(10): 975-984. JIANG Yizhang, DENG Zhaohong, WANG Jun, et al. Transfer generalized fuzzy c-means clustering algorithm with improved fuzzy partitions by leveraging knowledge[J]. Pattern recognition and artificial intelligence, 2013, 26(10): 975-984.
[12] JIANG Wenhao, CHUNG F L. Transfer spectral clustering[M]//FLACH P A, DE BIE T, CRISTIANINI N. Machine learning and knowledge discovery in databases: lecture notes in computer science. Berlin Heidelberg: Springer, 2012, 7524: 789-803.
[13] 李昆仑, 曹铮, 曹丽苹, 等. 半监督聚类的若干新进展[J]. 模式识别与人工智能, 2009, 22(5): 735-742. LI Kunlun, CAO Zheng, CAO Liping, et al. Some developments on semi-supervised clustering[J]. Pattern recognition and artificial intelligence, 2009, 22(5): 735-742.
[14] PAL N R, PAL K, BEZDEK J C. A mixed c-means clustering model[C]//Proceedings of the 6th IEEE International Conference on Fuzzy Systems. Barcelona, Spain, 1997, 1: 11-21.
[15] BEZDEK J C, EHRLICH R, FULL W. FCM: The fuzzy c-means clustering algorithm[J]. Computers and geosciences, 1984, 10(2-3): 191-203.
[16] KRISHNAPURAM R, KELLER J M. The possibilistic C-means algorithm: insights and recommendations[J]. IEEE transactions on fuzzy systems, 1996, 4(3): 385-393.
[17] PEDRYCZ W. Algorithms of fuzzy clustering with partial supervision[J]. Pattern recognition letters, 1985, 3(1): 13-20.
[18] GU Quanquan, ZHOU Jie. Learning the shared subspace for multi-task clustering and transductive transfer classification[C]//Proceedings of the 2009 9th IEEE international conference on data mining. Miami, Florida, USA, 2009: 159-168.
[19] 杨燕, 靳蕃, KAME M. 聚类有效性评价综述[J]. 计算机应用研究, 2008, 25(6): 1630-1632, 1638. YANG Yan, JIN Fan, KAME M. Survey of clustering validity evaluation[J]. Application research of computers, 2008, 25(6): 1630-1632, 1638.
[20] GU Quanquan, ZHOU Jie. Co-clustering on manifolds[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 359-368.
[21] CAI Deng, HE Xiaofei, HAN Jiawei. Locally consistent concept factorization for document clustering[J]. IEEE transactions on knowledge and data engineering, 2011, 23(6): 902-913.
相似文献/References:
[1]杨小兵,何灵敏,孔繁胜.切换回归模型的抗噪音聚类算法[J].智能系统学报编辑部,2009,4(6):497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
 YANG Xiao-bing,HE Ling-min,KONG Fan-sheng.A noise-resistant clustering algorithm for switching regression models[J].CAAI Transactions on Intelligent Systems,2009,4():497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
[2]季瑞瑞,刘 丁.支持向量数据描述的基因表达数据聚类方法[J].智能系统学报编辑部,2009,4(6):544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
 JI Rui-rui,LIU Ding.Improved gene expression data clustering using a support vector domain description algorithm[J].CAAI Transactions on Intelligent Systems,2009,4():544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
[3]张秀玲,逄宗鹏,李少清,等.ANFIS的板形控制动态影响矩阵方法[J].智能系统学报编辑部,2010,5(4):360.
 ZHANG Xiu-ling,PANG Zong-peng,LI Shao-qing,et al.A dynamic influence matrix method for flatness control based on adaptivenetworkbased fuzzy inference systems[J].CAAI Transactions on Intelligent Systems,2010,5():360.
[4]李伟,杨晓峰,张重阳,等.复杂网络社团的投影聚类划分[J].智能系统学报编辑部,2011,6(1):57.
 LI Wei,YANG Xiaofeng,ZHANG Chongyang,et al.A clustering method for community detection on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6():57.
[5]陈岳峰,苗夺谦,李文,等.基于概念的词汇情感倾向识别方法[J].智能系统学报编辑部,2011,6(6):489.
 CHEN Yuefeng,MIAO Duoqian,LI Wen,et al.Semantic orientation computing based on concepts[J].CAAI Transactions on Intelligent Systems,2011,6():489.
[6]方然,苗夺谦,张志飞.一种基于情感的中文微博话题检测方法[J].智能系统学报编辑部,2013,8(3):208.
 FANG Ran,MIAO Duoqian,ZHANG Zhifei.An emotion-based method of topic detection from Chinese microblogs[J].CAAI Transactions on Intelligent Systems,2013,8():208.
[7]刘恋,常冬霞,邓勇.动态小生境人工鱼群算法的图像分割[J].智能系统学报编辑部,2015,10(5):669.[doi:10.11992/tis.201501001]
 LIU lian,CHANG Dongxia,DENG Yong.An image segmentation method based on dynamic niche artificial fish-swarm algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():669.[doi:10.11992/tis.201501001]
[8]刘贝贝,马儒宁,丁军娣.基于密度的统计合并聚类算法[J].智能系统学报编辑部,2015,10(5):712.[doi:10.11992/tis.201410028]
 LIU Beibei,MA Runing,DING Jundi.Density-based statistical merging clustering algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():712.[doi:10.11992/tis.201410028]
[9]朱书伟,周治平,张道文.融合并行混沌萤火虫算法的K-调和均值聚类[J].智能系统学报编辑部,2015,10(6):872.[doi:10.11992/tis.201505043]
 ZHU Shuwei,ZHOU Zhiping,ZHANG Daowen.K-harmonic means clustering merged with parallel chaotic firefly algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():872.[doi:10.11992/tis.201505043]
[10]王晓初,包芳,王士同,等.基于最小最大概率机的迁移学习分类算法[J].智能系统学报编辑部,2016,11(1):84.[doi:10.11992/tis.201505024]
 WANG Xiaochu,BAO Fang,WANG Shitong,et al.Transfer learning classification algorithms based on minimax probability machine[J].CAAI Transactions on Intelligent Systems,2016,11():84.[doi:10.11992/tis.201505024]

备注/Memo

收稿日期:2016-3-19;改回日期:。
基金项目:国家自然科学基金项目(61170111,61572407,61134002);四川省科技支撑计划项目(2014SZ0207).
作者简介:王跃,男,1990年生,硕士研究生,主要研究方向为数据挖掘、计算智能。杨燕,女,1964年生,教授,博士生导师,主要研究方向为计算智能、数据挖掘、集成学习。主持国家自然科学基金项目3项,国家科技支撑计划项目1项,发表学术论文130余篇。王红军,男,1977年生,副研究员,主要研究方向为机器学习、深度学习、半监督学习。主持完成国家自然科学青年基金项目1项,主持国家自然科学基金项目2项,发表学术论文30余篇。
通讯作者:杨燕.E-mail:yyang@swjtu.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134