[1]赵志辉,赵瑞珍,岑翼刚,等.基于稀疏表示与线性回归的图像快速超分辨率重建[J].智能系统学报,2017,12(1):8-14.[doi:10.11992/tis.201603039]
 ZHAO Zhihui,ZHAO Ruizhen,CEN Yigang,et al.Rapid super-resolution image reconstruction based on sparse representation and linear regression[J].CAAI Transactions on Intelligent Systems,2017,12(1):8-14.[doi:10.11992/tis.201603039]
点击复制

基于稀疏表示与线性回归的图像快速超分辨率重建

参考文献/References:
[1] BHAVSAR A V. Range image super-resolution via reconstruction of sparse range data[C]//Proceedings of the 2013 International Conference on Intelligent Systems and Signal Processing. Gujarat, India, 2013: 198-203.
[2] YANG Minchun, WANG Y C F. A self-learning approach to single image super-resolution[J]. IEEE transactions on multimedia, 2013, 15(3): 498-508.
[3] PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technical overview[J]. IEEE signal processing magazine, 2003, 20(3): 21-36.
[4] LI Xin, ORCHARD M T. New edge-directed interpolation[J]. IEEE transactions on image processing, 2001, 10(10): 1521-1527.
[5] FATTAL R. Image upsampling via imposed edge statistics[J]. ACM transactions on graphics (TOG), 2007, 26(3): 95.
[6] FREEMAN W T, JONES T R, PASZTOR E C. Example-based super-resolution[J]. IEEE computer graphics and applications, 2002, 22(2): 56-65.
[7] YANG C Y, YANG M H. Fast direct super-resolution by simple functions[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 561-568.
[8] SUN Jian, XU Zongben, SHUM H Y, et al. Image super-resolution using gradient profile prior[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8.
[9] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[M]//FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision-ECCV 2014. Switzerland: Springer, 2014: 184-199.
[10] OLSHAUSEN B A, FIELD D J. Sparse coding with an overcomplete basis set: a strategy employed by V1[J]. Vision research, 1997, 37(23): 3311-3325.
[11] TIMOFTE R, DE V, VAN GOOL L. Anchored neighborhood regression for fast example-based super-resolution[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 1920-1927.
[12] CHANG Hong, YEUNG D Y, XIONG Yimin. Super-resolution through neighbor embedding[C]//Proceedings of the 2004 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA, 2004.
[13] YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE transactions on image processing, 2010, 19(11): 2861-2873.
[14] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[M]//BOISSONNAT J D, CHENIN P, COHEN A, et al. Curves and Surfaces. Berlin Heidelberg: Springer, 2012: 711-730.
[15] AHARON M, ELAD M, BRUCKSTEIN A. rmK—SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE transactions on signal processing, 2006, 54(11): 4311-4322.
[16] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of British Machine Vision Conference 2012. Guildford, Surrey, UK, 2012: 1-10.
[17] YANG C Y, MA C, YANG M H. Single-image super-resolution: a benchmark[M]//FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision-ECCV 2014. Switzerland: Springer, 2014: 372-386.
[18] TIMOFTE R, DE SMET V, VAN GOOL L. A+: adjusted anchored neighborhood regression for fast super-resolution[M]//CREMERS D, REID I, SAITO H, et al. Computer Vision—ACCV 2014. Switzerland: Springer, 2014: 111-126.
[19] SCHULTER S, LEISTNER C, BISCHOF H. Fast and accurate image upscaling with super-resolution forests[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, 2015: 3791-3799.
相似文献/References:
[1]严菲,王晓栋.鲁棒的半监督多标签特征选择方法[J].智能系统学报,2019,14(4):812.[doi:10.11992/tis.201809017]
 YAN Fei,WANG Xiaodong.A robust, semi-supervised, and multi-label feature selection method[J].CAAI Transactions on Intelligent Systems,2019,14():812.[doi:10.11992/tis.201809017]
[2]王凡超,丁世飞.基于广泛激活深度残差网络的图像超分辨率重建[J].智能系统学报,2022,17(2):440.[doi:10.11992/tis.202106023]
 WANG Fanchao,DING Shifei.Image super-resolution reconstruction based on widely activated deep residual networks[J].CAAI Transactions on Intelligent Systems,2022,17():440.[doi:10.11992/tis.202106023]

备注/Memo

收稿日期:2016-3-19;改回日期:。
基金项目:国家自然科学基金项目(61272028,61572067);国家“863”计划项目(2014AA015202);广东省自然科学基金项目(2016A030313708);北京市自然科学基金项目(4162050).
作者简介:赵志辉,男,1990年生,硕士研究生,主要研究方向为稀疏表示与图像超分辨率;赵瑞珍,男,1975年生,教授,博士生导师,博士,主要研究方向为图像与信号处理算法、压缩感知与稀疏表示、信息感知域智能信息处理。主持参与国家自然科学基金、“863”计划等多项项目;岑翼刚,男,1978年生,教授,博士生导师,博士,主要研究方向为小波分析、压缩感知、图像处理。发表学术论文40余篇。
通讯作者:岑翼刚.E-mail:ygcen@bjtu.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134