[1]李永新,陈增强,孙青林.基于模糊控制与预测控制切换的翼伞系统航迹跟踪控制[J].智能系统学报,2012,7(06):481-488.
 LI Yongxin,CHEN Zengqiang,SUN Qinglin.Flight path tracking of a parafoil system based on the switching between fuzzy control and predictive control[J].CAAI Transactions on Intelligent Systems,2012,7(06):481-488.
点击复制

基于模糊控制与预测控制切换的翼伞系统航迹跟踪控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年06期
页码:
481-488
栏目:
出版日期:
2012-12-25

文章信息/Info

Title:
Flight path tracking of a parafoil system based on the switching between fuzzy control and predictive control
文章编号:
1673-4785(2012)06-0481-08
作者:
李永新陈增强孙青林
南开大学 信息技术科学学院,天津 300071
Author(s):
LI Yongxin CHEN Zengqiang SUN Qinglin
College of Information Technical Science, Nankai University, Tianjin 300071, China
关键词:
翼伞航迹跟踪模糊控制预测控制切换
Keywords:
parafoil systemflight path tracking fuzzy control predictive control switching
分类号:
TP273.2
文献标志码:
A
摘要:
以翼伞系统的六自由度模型为基础,针对翼伞系统的平面航迹跟踪问题,对已有的预测控制器进行改进,提出模糊控制和广义预测控制相互切换的控制模式.利用横向轨迹误差法,在翼伞偏航角误差较大的情况下,采用模糊控制,直至偏航角误差达到设定的较小范围内,切换为广义预测控制,对翼伞航迹进行精确的制导,在一定程度上减少了处理器的运算量.采用真实的翼伞参数建立仿真模型,结果验证了这一控制方法的有效性.
Abstract:
Based on the parafoil system model with six degrees of freedom, aim at the plane flight path tracking problem, the existing predictive controller is improved. A control mode is proposed, which switches between fuzzy control and generalized predictive control. According to the cross track error, when the yawing angle error of the parafoil is bigger, the fuzzy controller is applied until the error attains a small range that has been set. Then, the fuzzy control is switched to generalized predictive control, which can control and guide the parafoil in a higher precise level. In this way, the operation of the processor can be reduced to a certain extent. A simulation model is built up based on an actual parafoil, and the final result demonstrates the validity of the control mode.

参考文献/References:

[1]熊菁. 翼伞系统动力学与归航方案研究[D]. 长沙:国防科技大学, 2005: 17. 
XIONG Jing. Research on the dynamics and homing project of parafoil system[D]. Changsha: National University of Defense Technology, 2005: 17.
[2]秦子增, 葛玉君. 可控翼伞飞行转弯控制性能仿真初步研究[J]. 宇航学报, 1993(1): 8996. 
QIN Zizeng, GE Yujun. Preliminary simulation of flight turn performance of controllable parafoil systems[J]. Journal of Astronautics, 1993(1): 8996.
[3]史献林,余莉. 翼伞空中回收系统的研究及其进展[J]. 航天返回与遥感, 2008, 29(1): 15. 
SHI Xianlin, YU Li. The study and development of the parafoil midair retrieval system[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(1): 15.
[4]吴兆元. 美国X38计划于翼伞返回系统[J]. 航天返回与遥感, 2000, 21(4): 713. 
WU Zhaoyuan. X38 CRV and parachute recovery system[J]. Spacecraft Recovery & Remote Sensing, 2000, 21(4): 713.
[5]STEIN J M, MADSEN C M, STRAHAN A L. An overview of the guided parafoil system derived from X38 experience[C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar Arlington. Munich, Germany, 2005: 516529.
[6]PETRY G, BEHR R. The parafoil technology demonstration project: lessons learned and future visions[C]//14th AIAA Aerodynamic Decelerator Systems Technology Conference. Munich, Germany, 1999: AIAA991755.
[7]SOPPA U, STRAUCH H. GNC concept for automated landing of a large parafoil[C]//14th Aerodynamic Decelerator Systems Technology Conference and Seminar. San Francisco, USA, 1997: AIAA971464.
[8]焦亮. 基于翼伞空投机器人系统的自主归航研究[D]. 天津: 南开大学, 2011: 3440. 
JIAO Liang. Research on autonomous homing based on parafoil and airdropped robot system[D]. Tianjin: Nankai University, 2011: 3440.
[9]蒲志刚,李良春,唐波. 翼伞系统分段归航方向控制方法[J]. 四川兵工学报, 2009, 30(10): 117119. 
PU Zhigang, LI Liangchun, TANG Bo. The direction control of the parafoil system’s multiphase trajectory[J]. Journal of Sichuan Ordnance, 2009, 30(10): 117119.
[10]郭叔伟, 董杨彪, 秦子增. 物伞系统动力学模型和讨论[J].航天返回与遥感, 2008, 29(3): 3844. 
GUO Shuwei, DONG Yangbiao, QIN Zizeng. Dynamic model and discussion of the parachute and payload system[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(3): 3844.
[11]KANG Y, HEDRICK J K. Linear tracking for a fixedwing UAV using nonlinear model predictive control[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 12021210.
[12]CLARKE D W, MOHTADI C, TUFFS P S. Generalized predictive control-part I: the basic algorithm[J]. Automatica, 1987, 23(2): 137148.
[13]李国勇. 智能控制及其Matlab实现[M]. 2版.北京:电子工业出版社, 2010: 163165, 216219.
[14]王伟. 广义预测控制理论及其应用[M]. 北京: 科学出版社, 1998: 205233.
[15]李少远. 工业过程系统的预测控制[J]. 控制工程, 2010, 17(4): 407415.  LI Shaoyuan. Modelbased predictive control for industrial processa survey[J]. Control Engineering, 2010, 17(4): 407415.
[16]李桂秋, 陈志旺. 基于跟踪误差调节的模糊直接广义预测控制[J]. 计算机应用研究, 2012, 27(3): 10091011, 1014. 
LI Guiqiu, CHEN Zhiwang. Fuzzy direct generalized predictive control based on tracking error adjustment[J]. Application Research of Computers, 2012, 27(3): 10091011, 1014.

备注/Memo

备注/Memo:
收稿日期: 2012-05-07.
网络出版日期:2012-11-16.
基金项目:国家自然科学基金资助项目(61174094);天津市科技支撑计划资助项目(09ZCKFSF00500).
通信作者:李永新.
E-mail:newliyx@gmail.com.
作者简介:
李永新,男,1979年生,博士研究生,主要研究方向为复杂系统建模与控制.
陈增强,男,1964年生,教授,博士生导师,教育部新世纪人才,中国系统仿真学会理事,中国自动化学会控制理论专业委员会委员和过程控制专业委员会委员.主要研究方向为智能预测控制、智能优化计算、多智能体系统控制等.曾获得省部级科技进步奖4次,发表学术论文150余篇,被SCI检索100余篇. 
孙青林,男,1963年生,教授,博士生导师,中国人工智能学会智能空天专业委员会委员.主要研究方向为智能预测控制、嵌入式控制、翼伞自主归航控制等,发表学术论文60余篇,被SCI、EI检索10余篇.
更新日期/Last Update: 2013-03-19