[1]秦冬燕,闫晓辉,邵桂伟,等.基于事件触发灰狼优化算法的四旋翼无人机三维航迹规划[J].智能系统学报,2025,20(3):699-706.[doi:10.11992/tis.202406013]
QIN Dongyan,YAN Xiaohui,SHAO Guiwei,et al.Event-triggered gray wolf optimization for quadrotor unmanned aerial vehicle three-dimensional trajectory planning[J].CAAI Transactions on Intelligent Systems,2025,20(3):699-706.[doi:10.11992/tis.202406013]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第3期
页码:
699-706
栏目:
学术论文—智能系统
出版日期:
2025-05-05
- Title:
-
Event-triggered gray wolf optimization for quadrotor unmanned aerial vehicle three-dimensional trajectory planning
- 作者:
-
秦冬燕, 闫晓辉, 邵桂伟, 姚玉武
-
合肥大学 人工智能与大数据学院, 安徽 合肥 230601
- Author(s):
-
QIN Dongyan, YAN Xiaohui, SHAO Guiwei, YAO Yuwu
-
School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, China
-
- 关键词:
-
改进GWO算法; 事件触发; 三维航迹规划; 球面矢量; 自适应加权; 非线性收敛因子; 速度暂停; 四旋翼无人机
- Keywords:
-
improved GWO algorithm; event-triggered; 3D path planning; spherical vector; adaptive weight; nonlinear convergence factor; velocity pausing; quadrotor unmanned aerial vehicle
- 分类号:
-
TP242
- DOI:
-
10.11992/tis.202406013
- 摘要:
-
针对复杂环境下四旋翼无人机三维航迹规划问题,提出了一种改进的事件触发灰狼优化算法(event triggered grey wolf optimization,ETGWO)。引入球面矢量刻画飞行路径的生成,通过减少搜索空间提升搜索能力;设计自适应权重动态调整飞行航迹成本适应度函数,以提高航迹规划效率和准确性;在灰狼优化算法(grey wolf optimization,GWO)基础上,选择使用改进的非线性收敛因子,提升算法的鲁棒性;为了更好地平衡算法的全局搜索和局部搜索能力,通过引入基于事件触发机制的灰狼个体位置更新速度来改进GWO算法的位置更新策略。仿真对比实验表明,所提出ETGWO算法在四旋翼无人机(quadrotor unmanned aerial vehicles, QUAV)飞行航迹规划方面具有更优越的性能。
- Abstract:
-
An improved event-triggered gray wolf optimization algorithm (ETGWO) is proposed for the 3D path planning of quadrotor unmanned aerial vehicles in complex environments. First, the search space and search capabilities are reduced and improved, respectively, by introducing spherical vectors to characterize flight path generation. Second, the adaptive weights are designed to dynamically adjust the fitness function of the flight trajectory cost, thereby improving the efficiency and accuracy of path planning. Based on the gray wolf optimization (GWO) algorithm, a nonlinear convergence factor is selected to enhance the robustness of the algorithm. Additionally, to better balance the global and local search capabilities, the position update strategy of the gray wolf individuals is developed based on the update velocity, which is integrated with the event-triggered mechanism. Finally, simulation and comparative experiments are performed to confirm the superior planning performance of ETGWO compared with those of other algorithms.
备注/Memo
收稿日期:2024-6-11。
基金项目:国家自然科学基金项目(61903118);安徽省自然科学基金项目(1908085QF290);合肥学院人才科研基金项目(20RC27).
作者简介:秦冬燕,硕士研究生,主要研究方向为四旋翼无人机路径规划。E-mail:2671812444@qq.com。;闫晓辉,教授,主要研究方向为非线性系统控制、无人系统智能控制、轨迹规划。发表学术论文 30 余篇。E-mail:xhyan@hfuu.edu.cn。;邵桂伟,副教授,主要研究方向为算法、强化学习与优化控制。E-mail:shaoguiwei@hfuu.edu.cn。
通讯作者:闫晓辉. E-mail:xhyan@hfuu.edu.cn
更新日期/Last Update:
1900-01-01