[1]钱进,童志钢,余鹰,等.基于广义自适应多粒度的多源信息融合研究[J].智能系统学报,2023,18(1):173-185.[doi:10.11992/tis.202208030]
 QIAN Jin,TONG Zhigang,YU Ying,et al.Multi-source information fusion through generalized adaptive multi-granulation[J].CAAI Transactions on Intelligent Systems,2023,18(1):173-185.[doi:10.11992/tis.202208030]
点击复制

基于广义自适应多粒度的多源信息融合研究

参考文献/References:
[1] YU Jianhang, XU Weihua. Information fusion for multi-source fuzzy information system with the same structure[C]//2015 International Conference on Machine Learning and Cybernetics. Guangzhou: IEEE, 2015: 170?175.
[2] XU Weihua, YU Jianhang. A novel approach to information fusion in multi-source datasets: a granular computing viewpoint[J]. Information sciences, 2017, 378: 410–423.
[3] SANG Binbin, GUO Yanting, SHI Derong, et al. Decision-theoretic rough set model of multi-source decision systems[J]. International journal of machine learning and cybernetics, 2018, 9(11): 1941–1954.
[4] ZHANG Pengfei, LI Tianrui, YUAN Zhong, et al. A data-level fusion model for unsupervised attribute selection in multi-source homogeneous data[J]. Information fusion, 2022, 80: 87–103.
[5] ZHANG Xiaoyan, CHEN Xiuwei, XU Weihua, et al. Dynamic information fusion in multi-source incomplete interval-valued information system with variation of information sources and attributes[J]. Information sciences, 2022, 608: 1–27.
[6] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information sciences, 2010, 180(6): 949–970.
[7] YANG Xibei, QI Yunsong, SONG Xiaoning, et al. Test cost sensitive multigranulation rough set: model and minimal cost selection[J]. Information sciences, 2013, 250: 184–199.
[8] LIU Caihui, MIAO Duoqian, QIAN Jin. On multi-granulation covering rough sets[J]. International journal of approximate reasoning, 2014, 55(6): 1404–1418.
[9] QIAN Yuhua, ZHANG Hu, SANG Yanli, et al. Multigranulation decision-theoretic rough sets[J]. International journal of approximate reasoning, 2014, 55(1): 225–237.
[10] SUN Bingzhen, MA Weimin. Multigranulation rough set theory over two universes[J]. Journal of intelligent & fuzzy systems, 2015, 28(3): 1251–1269.
[11] 梁美社, 米据生, 赵天娜. 广义优势多粒度直觉模糊粗糙集及规则获取[J]. 智能系统学报, 2017, 12(6): 883–888
LIANG Meishe, MI Jusheng, ZHAO Tianna. Generalized dominance-based multi-granularity intuitionistic fuzzy rough set and acquisition of decision rules[J]. CAAI transactions on intelligent systems, 2017, 12(6): 883–888
[12] YU Jianhang, ZHANG Biao, CHEN Minghao, et al. Double-quantitative decision-theoretic approach to multigranulation approximate space[J]. International journal of approximate reasoning, 2018, 98: 236–258.
[13] QIAN Jin, LIU Caihui, MIAO Duoqian, et al. Sequential three-way decisions via multi-granularity[J]. Information sciences, 2020, 507: 606–629.
[14] 李金海, 王飞, 吴伟志, 等. 基于粒计算的多粒度数据分析方法综述[J]. 数据采集与处理, 2021, 36(3): 418–435
LI Jinhai, WANG Fei, WU Weizhi, et al. Review of multi-granularity data analysis methods based on granular computing[J]. Journal of data acquisition and processing, 2021, 36(3): 418–435
[15] ZHANG Pengfei, LI Tianrui, LUO Chuan, et al. AMG-DTRS: adaptive multi-granulation decision-theoretic rough sets[J]. International journal of approximate reasoning, 2022, 140: 7–30.
[16] 林国平, 梁吉业, 钱宇华. 基于多粒度视角下的D-S证据理论融合策略[J]. 计算机科学, 2014, 41(2): 45–48
LIN Guoping, LIANG Jiye, QIAN Yuhua. Multigranulation view based fusing strategy of D-S evidence[J]. Computer science, 2014, 41(2): 45–48
[17] CHE Xiaoya, MI Jusheng, CHEN Degang. Information fusion and numerical characterization of a multi-source information system[J]. Knowledge-based systems, 2018, 145: 121–133.
[18] SANG Binbin, YANG Lei, CHEN Hongmei, et al. Generalized multi-granulation double-quantitative decision-theoretic rough set of multi-source information system[J]. International journal of approximate reasoning, 2019, 115: 157–179.
[19] CHE Xiaoya, MI Jusheng. Attributes set reduction in multigranulation approximation space of a multi-source decision information system[J]. International journal of machine learning and cybernetics, 2019, 10(9): 2297–2311.
[20] 万青, 魏玲, 任睿思. 协调多源决策表的规则提取[J]. 南京大学学报(自然科学), 2020, 56(4): 494–504
WAN Qing, WEI Ling, REN Ruisi. Rule acquisition of consistent multi-source decision tables[J]. Journal of Nanjing University (natural science edition), 2020, 56(4): 494–504
[21] YANG Lei, XU Weihua, ZHANG Xiaoyan, et al. Multi-granulation method for information fusion in multi-source decision information system[J]. International journal of approximate reasoning, 2020, 122: 47–65.
[22] 骆公志, 陈佳馨. 多源覆盖信息系统下的加权广义多粒度粗糙集模型及其应用[J]. 计算机工程与科学, 2021, 43(12): 2231–2237
LUO Gongzhi, CHEN Jiaxin. A weighted generalized multi-granulation rough set model of multi-source covering information system and its applications[J]. Computer engineering & science, 2021, 43(12): 2231–2237
[23] CHU Xiaoli, SUN Bingzhen, CHU Xiaodong, et al. Multi-granularity dominance rough concept attribute reduction over hybrid information systems and its application in clinical decision-making[J]. Information sciences, 2022, 597: 274–299.
[24] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341–356.
[25] YAO Y Y, WONG S K M. A decision theoretic framework for approximating concepts[J]. International journal of man-machine studies, 1992, 37(6): 793–809.
[26] XU Weihua, LI Wentao, ZHANG Xiantao. Generalized multigranulation rough sets and optimal granularity selection[J]. Granular computing, 2017, 2(4): 271–288.
[27] SUO Mingliang, TAO Laifa, ZHU Baolong, et al. Single-parameter decision-theoretic rough set[J]. Information sciences, 2020, 539: 49–80.
相似文献/References:
[1]马大中,张化光,冯 健,等.一种基于多传感器信息融合的故障诊断方法[J].智能系统学报,2009,4(1):72.
 MA Da-zhong,ZHANG Hua-guang,FENG Jian,et al.A fault diagnosis method based on multi-sensor information fusion[J].CAAI Transactions on Intelligent Systems,2009,4():72.
[2]徐立中,林志贵,黄凤辰.基于模糊证据理论的水质环境状态估计[J].智能系统学报,2007,2(3):79.
 XU Li-zhong,LIN Zhi-gui,Huang Feng-chen.Water environmental qual ity assessment based on fuzzy evidence theory[J].CAAI Transactions on Intelligent Systems,2007,2():79.
[3]徐立中,等.多源监测信息融合仿生复眼型系统模式及感知计算机理[J].智能系统学报,2008,3(4):328.
 XU L i-zhong,SH IAi-ye,et al.A perceptual and computationalmechan ism for bion ic compound eye systems with multi-source information fusion[J].CAAI Transactions on Intelligent Systems,2008,3():328.
[4]黄心汉,李 鹏,王 敏.广义证据推理融合结构[J].智能系统学报,2010,5(6):487.
 HUANG Xin-han,LI Peng,WANG Min.General evidence reasoning fusion structure[J].CAAI Transactions on Intelligent Systems,2010,5():487.
[5]夏飞,马茜,张浩,等.改进D-S证据理论在电动汽车锂电池故障诊断中的应用[J].智能系统学报,2017,12(4):526.[doi:10.11992/tis.201605001]
 XIA Fei,MA Xi,ZHANG Hao,et al.Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles[J].CAAI Transactions on Intelligent Systems,2017,12():526.[doi:10.11992/tis.201605001]
[6]潘家辉,何志鹏,李自娜,等.多模态情绪识别研究综述[J].智能系统学报,2020,15(4):633.[doi:10.11992/tis.202001032]
 PAN Jiahui,HE Zhipeng,LI Zina,et al.A review of multimodal emotion recognition[J].CAAI Transactions on Intelligent Systems,2020,15():633.[doi:10.11992/tis.202001032]
[7]陈立潮,解丹,曹建芳,等.改进光流法和GMM融合的车辆实时检测算法研究[J].智能系统学报,2021,16(2):271.[doi:10.11992/tis.201907051]
 CHEN Lichao,XIE Dan,CAO Jianfang,et al.Research on vehicle real-time detection algorithm based on improved optical flow method and GMM[J].CAAI Transactions on Intelligent Systems,2021,16():271.[doi:10.11992/tis.201907051]
[8]方涛,陈志国,傅毅.神经网络多层特征信息融合的人脸识别方法[J].智能系统学报,2021,16(2):279.[doi:10.11992/tis.201907053]
 FANG Tao,CHEN Zhiguo,FU Yi.Face recognition method based on neural network multi-layer feature information fusion[J].CAAI Transactions on Intelligent Systems,2021,16():279.[doi:10.11992/tis.201907053]
[9]王宇晖,杜军平,邵蓥侠.基于Transformer与技术词信息的知识产权实体识别方法[J].智能系统学报,2023,18(1):186.[doi:10.11992/tis.202203036]
 WANG Yuhui,DU Junping,SHAO Yingxia.An intellectual property entity recognition method based on Transformer and technological word information[J].CAAI Transactions on Intelligent Systems,2023,18():186.[doi:10.11992/tis.202203036]

备注/Memo

收稿日期:2022-08-22。
基金项目:国家自然科学基金项目(62066014,62163016);江西省自然科学基金项目(20202BABL202018,20212ACB202001)
作者简介:钱进,教授,博士,主要研究方向为粒计算、大数据挖掘和机器学习。主持国家自然科学基金项目2项、省部级自然科学基金项目3项。获江西省自然科学奖1项。发表学术论文50余篇;童志钢,硕士研究生,主要研究方向为粗糙集、粒计算和大数据挖掘;苗夺谦,教授,博士,国际粗糙集学会理事长、中国人工智能学会会士、中国计算机学会杰出会员,主要研究方向为粒计算、不确定性、大数据分析。荣获中国人工智能学会吴文俊人工智能自然科学二等奖1项;主持国家自然科学基金面上项目7项,发表学术论文180余篇,ESI高被引8篇;出版教材和学术著作10余部。
通讯作者:钱进.E-mail:qjqjlqyf@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com