[1]季晓明,文怀海.自适应神经网络四旋翼无人机有限时间轨迹跟踪控制[J].智能系统学报,2022,17(3):540-546.[doi:10.11992/tis.202104019]
 JI Xiaoming,WEN Huaihai.Finite-time trajectory tracking control based on an adaptive neural network for a quadrotor UAV[J].CAAI Transactions on Intelligent Systems,2022,17(3):540-546.[doi:10.11992/tis.202104019]
点击复制

自适应神经网络四旋翼无人机有限时间轨迹跟踪控制

参考文献/References:
[1] 蒋林, 冷雪峰, 罗小华, 夏旭洪. 基于模糊单神经元PID的四旋翼控制研究[J]. 计算机仿真, 2019, 36(10): 39–43
JIANG LIN, LENG XUEFENG, LUO XIAOHUA, XIA XUHONG. Quadrotor control based on fuzzy-single neuron PID controller[J]. Computer simulation, 2019, 36(10): 39–43
[2] FOEHN P, ROMERO A, SCARAMUZZA D. Time-optimal planning for quadrotor waypoint flight[J]. Science robotics, 2021, 6(56): 1221–1240.
[3] MU C, ZHANG Y. Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties[J]. IEEE transactions on neural networks and learning systems, 2019, 31(1): 259–273.
[4] HOU Z, LU P, TU Z. Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure[J]. Aerospace science and technology, 2020, 98: 105716.
[5] ZHANG X, WANG Y, ZHU G, et al. Compound adaptive fuzzy quantized control for quadrotor and its experimental verification[J]. IEEE transactions on cybernetics, 2020, 51(3): 1121–1133.
[6] GUO K, JIA J, YU X, et al. Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances[J]. Control engineering practice, 2020, 102: 0967–0661.
[7] XIONG J J, ZHANG G. Discrete-time sliding mode control for a quadrotor UAV[J]. Optik, 2016, 127(8): 3718–3722.
[8] MOFID O, MOBAYEN S, WONG W K. Adaptive terminal sliding mode control for attitude and position tracking control of quadrotor UAVs in the existence of external disturbance[J]. IEEE access, 2020, 9: 3428–3440.
[9] YU Y, GUO Y, PAN X, et al. Robust backstepping tracking control of uncertain MIMO nonlinear systems with application to quadrotor UAVs[C]//2015 IEEE International Conference on Information and Automation. Lijiang, China, 2015: 2868–2873.
[10] GLIDA H E, ABDOU L, CHELIHI A, et al. Optimal model-free backstepping control for a quadrotor helicopter[J]. Nonlinear dynamics, 2020, 100(4): 3449–3468.
[11] BHATKHANDE P, HAVENS T C. Real time fuzzy controller for quadrotor stability control[C]//2014 IEEE International Conference on Fuzzy Systems. Beijing, China, 2014: 913–919.
[12] ALEXIS K, PAPACHRISTOS C, Siegwart R, et al. Robust model predictive flight control of unmanned rotorcrafts[J]. Journal of intelligent and robotic systems, 2016, 81(3-4): 443–469.
[13] 唐堂, 罗晓曙. 四旋翼无人机姿态非线性控制研究[J]. 计算机仿真, 2019, 36(1): 71–76
TANG TANG, LUO XIAOSHU. The research on nonlinear control of quadrotor UAV attitude[J]. Computer simulation, 2019, 36(1): 71–76
[14] AHMED N, CHEN M, SHAO S. Disturbance observer based tracking control of quadrotor with high-order disturbances[J]. IEEE access, 2020, 8: 8300–8313.
[15] HWANGBO J, SA I, Siegwart R, et al. Control of a quadrotor with reinforcement learning[J]. IEEE robotics and automation letters, 2017, 2(4): 2096–2103.
[16] SHARMA M, KAR I. Control of a quadrotor with network induced time delay[J]. ISA transactions, 2021, 111: 132–143.
[17] WANG N, DENG Q, XIE G, et al. Hybrid finite-time trajectory tracking control of a quadrotor[J]. ISA transactions, 2019, 90: 278–286.
[18] 刘凯悦, 冷建伟. 关于四旋翼无人机目标轨迹跟踪控制的研究[J]. 计算机仿真, 2017, 34(5): 103–107
LIU KAIYUE, LENG JIANWEI. The study on the desired trajectory tracking control of quadrotor UAV[J]. Computer simulation, 2017, 34(5): 103–107
[19] XIONG J J, ZHANG G B. Global fast dynamic terminal sliding mode control for a quadrotor UAV[J]. ISA transactions, 2017, 66: 233–240.
[20] HUA C C, WANG K, CHEN J N, et al. Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor[J]. Nonlinear dynamics, 2018, 94(1): 343–354.
[21] ELIKER K, ZHANG W. Finite-time adaptive integral backstepping fast terminal sliding mode control application on quadrotor UAV[J]. International journal of control, automation and systems, 2020, 18(2): 415–430.
[22] JOKAR H, VATANKHAH R. Adaptive fuzzy global fast terminal sliding mode control of an over-actuated flying robot[J]. Journal of the brazilian society of mechanical sciences and engineering, 2020, 42(4): 1–18.
[23] CUI R, YANG C, LI Y, et al. Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning[J]. IEEE transactions on systems, man, and cybernetics:Systems, 2017, 47(6): 1019–1029.
[24] ZHU Y, FEI J. Adaptive global fast terminal sliding mode control of grid-connected photovoltaic system using fuzzy neural network approach[J]. IEEE access, 2017, 5: 9476–9484.
[25] LABBADI M, CHERKAOUI M. Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances[J]. ISA transactions, 2020, 99: 290–304.
相似文献/References:
[1]马正华,张倩倩,陈岚萍.四旋翼飞行器自适应反演姿态控制[J].智能系统学报,2015,10(3):454.[doi:10.3969/j.issn.1673-4785.201405008]
 MA Zhenghua,ZHANG Qianqian,CHEN Lanping.Attitude control of quadrotor aircraft via adaptive back-stepping control[J].CAAI Transactions on Intelligent Systems,2015,10():454.[doi:10.3969/j.issn.1673-4785.201405008]

备注/Memo

收稿日期:2021-04-11。
作者简介:季晓明,副教授,主要研究方向为智能制造与控制。主持省级课题2项,市级课题5项。出版教材2部,发表学术论文30余篇;文怀海,博士研究生,主要研究方向为智能控制技术
通讯作者:季晓明.E-mail:20592443@qq.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com