[1]孔伶旭,吴海锋,曾玉,等.迁移学习特征提取的rs-fMRI早期轻度认知障碍分类[J].智能系统学报,2021,16(4):662-672.[doi:10.11992/tis.202007041]
 KONG Lingxu,WU Haifeng,ZENG Yu,et al.Transfer learning-based feature extraction method for the classification of rs-fMRI early mild cognitive impairment[J].CAAI Transactions on Intelligent Systems,2021,16(4):662-672.[doi:10.11992/tis.202007041]
点击复制

迁移学习特征提取的rs-fMRI早期轻度认知障碍分类

参考文献/References:
[1] BURNS A, ILIFFE S. Alzheimer’s disease[J]. British medical journal, 2009, 338(7692): 467-471.
[2] Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures[J]. Alzheimer’s & dementia, 2018, 14(3): 367-429.
[3] DAVATZIKOS C. Baseline and longitudinal patterns of brain atrophy in MCI patients and their use in prediction of short-term conversion to Alzheimer’s disease: results from ADNI[J]. Alzheimer’s & dementia, 2009, 5(4S): P21-P22.
[4] GRUNDMAN M, PETERSEN R C, FERRIS S H. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials[J]. Archives of neurology, 2004, 61(1): 59-66.
[5] BISCHKOPF J, BUSSE A, ANGERMEYER M C. Mild cognitive impairment-a review of prevalence, incidence and outcome according to current approaches[J]. Acta psychiatrica scandinavica, 2002, 106(6): 403-414.
[6] SHARMA N, SINGH A N. Exploring biomarkers for Alzheimer’s disease[J]. Journal of clinical and diagnostic research, 2016, 10(7): KE01-KE06.
[7] MCKAHNN G. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of department of health and human services task force on Alzheimer’s disease[J]. Neurology, 1984, 34(7): 939.
[8] SCHROETER M L, STEIN T, MASLOWSKI N, et al. Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients[J]. NeuroImage, 2009, 47(4): 1196-1206.
[9] HALLER S, BARTSCH A J. Pitfalls in fMRI[J]. European radiology, 2009, 19(11): 2689-2706.
[10] BRIER M R, THOMAS J B, SNYDER A Z, et al. Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression[J]. Journal of neuroscience, 2012, 32(26): 8890-8899.
[11] STANLEY M L, MOUSSA M N, PAOLINI B M, et al. Defining nodes in complex brain networks[J]. Frontiers in computational neuroscience, 2013, 7: 169.
[12] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[13] B?CKMAN L, JONES S, BERGER A K, et al. Multiple cognitive deficits during the transition to Alzheimer’s disease[J]. Journal of internal medicine, 2004, 256(3): 195-204.
[14] WEE C Y, YAP P T, DENNY K, et al. Resting-state multi-spectrum functional connectivity networks for identification of MCI patients[J]. PLoS One, 2012, 7(5): e37828.
[15] GEHRING J, MIAO Y J, METZE F, et al. Extracting deep bottleneck features using stacked auto-encoders[C]//Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada, 2013: 3377-3381.
[16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[17] HON M, KHAN N M. Towards Alzheimer’s disease classification through transfer learning[C]//Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine. Kansas City, MO, USA, 2017: 1166?1169.
[18] JOHNSON K A, FOX N C, SPERLING R A, et al. Brain Imaging in Alzheimer Disease[J]. Cold spring harbor perspectives in medicine, 2012, 2(4): a006213.
[19] CUINGNET R, GERARDIN E, TESSIERAS J, et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database[J]. Neuroimage, 2011, 56(2): 766-781.
[20] BARKHOF F, HALLER S, ROMBOUTS S A R B. Resting-state functional MR imaging: a new window to the brain[J]. Radiology, 2014, 272(1): 29-49.
[21] MACHULDA M M, WARD H A, BOROWSKI B, et al. Comparison of memory fMRI response among Normal, MCI, and Alzheimer’s patients[J]. Neurology, 2003, 61(4): 500-506.
[22] JU Ronghui, HU Chenhui, ZHOU Pan, et al. Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(1): 244-257.
[23] HJELM R D, CALHOUN V D, SALAKHUTDINOV R, et al. Restricted boltzmann machines for neuroimaging: an application in identifying intrinsic networks[J]. NeuroImage, 2014, 96: 245-260.
[24] NIE Dong, LU Junfeng, ZHANG Han, et al. Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages[J]. Scientific reports, 2019, 9(1): 1103.
[25] TZOURIO-MAZOYER N, LANDEAU B, PAPATHANASSIOU D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage, 2002, 15(1): 273-289.
[26] HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J/OL]. Computer Vision and Pattern Recognition. (2017-04-17) [2020-07-24] https://arxiv.org/abs/1704.04861v1.
[27] YAN Chaogan, ZANG Yufeng. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI[J]. Frontiers in Systems Neuroscience, 2010, 4: 13.
[28] XIONG Hui, SHEKHAR S, TAN Pangning, et al. Exploiting a support-based upper bound of Pearson’s correlation coefficient for efficiently identifying strongly correlated pairs[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, WA, USA, 2004: 334-343.
[29] MOORE A W. Cross-validation for detecting and preventing overfitting[M]. Pittsburgh, USA: Carnegie Mellon University, 2001.
[30] ZHENG Hao, YANG Zhanlei, LIU Wenju, et al. Improving deep neural networks using softplus units[C]//Proceedings of 2015 International Joint Conference on Neural Networks. Killarney, Ireland, 2015: 1?4.

备注/Memo

收稿日期:2020-07-24。
基金项目:国家自然科学基金项目(61762093);云南省教育厅科学研究基金项目(2020Y0238);云南省重点应用和基础研究基金项目(2018FA036)
作者简介:孔伶旭,硕士研究生,主要研究方向为深度学习、生物医学信号处理;吴海锋,教授,云南省中青年学术带头人,云南省高校智能传感网络及信息系统创新团队带头人,云南民族大学特聘教授(2015—2018年),云南省通信学会理事,主要研究方向为信号处理和机器学习,主持了国家和省级科研项目5项,以第一完成人获省自然科学三等奖。近5年以第1和通信作者发表学术论文15篇,总计引用次数300余次;曾玉,讲师,主要研究方向为深度学习
通讯作者:吴海锋.E-mail:whf5469@gmail.com

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134