[1]王霞,左一凡.视觉SLAM研究进展[J].智能系统学报,2020,15(5):825-834.[doi:10.11992/tis.202004023]
 WANG Xia,ZUO Yifan.Advances in visual SLAM research[J].CAAI Transactions on Intelligent Systems,2020,15(5):825-834.[doi:10.11992/tis.202004023]
点击复制

视觉SLAM研究进展

参考文献/References:
[1] LEONARD J J, DURRANT-WHYTE H F. Simultaneous map building and localization for an autonomous mobile robot[C]//Proceedings IROS’91: IEEE/RSJ International Workshop on Intelligent Robots and Systems’ 91. Osaka, Japan, 1991: 1442-1447.
[2] SMITH R, SELF M, CHEESEMAN P. Estimating uncertain spatial relationships in robotics[M]//COX I J, WILFONG G Y. Autonomous Robot Vehicles. New York, USA: Springer, 1990: 167-193.
[3] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163.
[4] QIN Tong, LI Peiliang, SHEN Shaojie. VINS-MONO: a robust and versatile monocular visual-inertial state estimator[J]. IEEE transactions on robotics, 2018, 34(4): 1004-1020.
[5] KLEIN G, MURRAY D. Parallel tracking and mapping on a camera phone[C]//Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality. Orlando, USA, 2009: 83-86.
[6] K?HLER O, PRISACARIU V A, REN C Y, et al. Very high frame rate volumetric integration of depth images on mobile devices[J]. IEEE transactions on visualization and computer graphics, 2015, 21(11): 1241-1250.
[7] LYNEN S, SATTLER T, BOSSE M, et al. Get out of my lab: large-scale, real-time visual-inertial localization[C]//Proceedings of Robotics: Science and Systems. Rome, Italy, 2015.
[8] 高翔, 张涛, 刘毅, 等. 视觉SLAM十四讲[M]. 北京: 电子工业出版社, 2017: 13-19.
[9] TAKETOMI T, UCHIYAMA H, IKEDA S. Visual slam algorithms: a survey from 2010 to 2016[J]. IPSJ transactions on computer vision and applications, 2017, 9(1): 16.
[10] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE transactions on robotics, 2016, 32(6): 1309-1332.
[11] HUANG Baichuan, ZHAO Jun, LIU Jingbin. A survey of simultaneous localization and mapping with an envision in 6G wireless networks[EB/OL]. (2020-02-14)[2020-03-20]. https://arxiv.org/pdf/1909.05214.pdf.
[12] 刘浩敏, 章国锋, 鲍虎军. 基于单目视觉的同时定位与地图构建方法综述[J]. 计算机辅助设计与图形学学报, 2016, 28(6): 855-868
LIU Haomin, ZHANG Guofeng, BAO Hujun. A survey of monocular simultaneous localization and mapping[J]. Journal of computer-aided design & computer graphics, 2016, 28(6): 855-868
[13] GALLEGO G, DELBRUCK T, ORCHARD G, et al. Event-based vision: a survey[J]. arXiv: 1904.08405, 2019.
[14] LICHTSTEINER P, POSCH C, DELBRUCK T. A 128×128 120 dB 15 μs latency asynchronous temporal contrast vision sensor[J]. IEEE journal of solid-state circuits, 2008, 43(2): 566-576.
[15] SON B, SUH Y, KIM S, et al. 4.1 A 640×480 dynamic vision sensor with a 9μm pixel and 300meps address-event representation[C]//Proceedings of 2017 IEEE International Solid-State Circuits Conference. San Francisco, USA, 2017: 66-67.
[16] POSCH C, MATOLIN D, WOHLGENANNT R, et al. A microbolometer asynchronous dynamic vision sensor for LWIR[J]. IEEE sensors journal, 2009, 9(6): 654-664.
[17] HOFST?TTER M, SCH?N P, POSCH C. A SPARC-compatible general purpose address-event processor with 20-bit l0ns-resolution asynchronous sensor data interface in 0.18 μm CMOS[C]//Proceedings of 2010 IEEE International Symposium on Circuits and Systems. Paris, France, 2010: 4229-4232.
[18] POSCH C, HOFSTATTER M, MATOLIN D, et al. A dual-line optical transient sensor with on-chip precision time-stamp generation[C]//Proceedings of 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. San Francisco, USA, 2007: 500-618.
[19] BRANDLI C, BERNER R, YANG Minhao, et al. A 240×180 130 dB 3 μs latency global shutter spatiotemporal vision sensor[J]. IEEE journal of solid-state circuits, 2014, 49(10): 2333-2341.
[20] POSCH C, MATOLIN D, WOHLGENANNT R. A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS[J]. IEEE journal of solid-state circuits, 2011, 46(1): 259-275.
[21] BAILEY T, DURRANT-WHYTE H. Simultaneous Localization and Mapping (SLAM): Part II[J]. IEEE robotics & automation magazine, 2006, 13(3): 108-117.
[22] DURRANT-WHYTE H, BAILEY T. Simultaneous localization and mapping: Part I[J]. IEEE robotics & automation magazine, 2006, 13(2): 99-110.
[23] DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM: real-time single camera SLAM[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 1052-1067.
[24] KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan, 2007: 225-234.
[25] KLEIN G, MURRAY D. Improving the agility of keyframe-based SLAM[C]//Proceedings of the 10th European Conference on Computer Vision. Marseille, France, 2008: 802-815.
[26] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain, 2011: 2564-2571.
[27] MUR-ARTAL R, TARDóS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 33(5): 1255-1262.
[28] FORSTER C, ZHANG Zichao, GASSNER M, et al. SVO: semidirect visual odometry for monocular and multicamera systems[J]. IEEE transactions on robotics, 2017, 33(2): 249-265.
[29] LOO S Y, AMIRI A J, MASHOHOR S, et al. CNN-SVO: improving the mapping in semi-direct visual odometry using single-image depth prediction[EB/OL]. (2018-10-01)[2020-02-03]. https://arxiv.org/abs/1810.01011.
[30] ZHANG Guofeng, LIU Haomin, DONG Zilong, et al. Efficient non-consecutive feature tracking for robust structure-from-motion[J]. IEEE transactions on image processing, 2016, 25(12): 5957-5970.
[31] ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(3): 611-625.
[32] SCHLEGEL D, COLOSI M, GRISETTI G. ProSLAM: graph SLAM from a programmer’s perspective[EB/OL]. (2017-09-13)[2020-02-04]. https://arxiv.org/abs/1709.04377.
[33] SUMIKURA S, SHIBUYA M, SAKURADA K. Openvslam: a versatile visual slam framework[C]//Proceedings of the 27th ACM International Conference on Multimedia. Nice, France, 2019.
[34] PFROMMER B, DANIILIDIS K. TagSLAM: robust slam with fiducial markers[EB/OL]. (2019-10-01)[2020-02-05]. https://arxiv.org/abs/1910.00679.
[35] MU?OZ-SALINAS R, MEDINA-CARNICER R. UcoSLAM: simultaneous localization and mapping by fusion of keypoints and squared planar markers[J]. Pattern recognition, 2020, 101: 107193.
[36] ENGEL J, SCH?PS T, CREMERS D. LSD-SLAM: large-scale direct monocular SLAM[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014.
[37] ENGEL J, STüCKLER J, CREMERS D. Large-scale direct SLAM with stereo cameras[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 1935-1942.
[38] CARUSO D, ENGEL J, CREMERS D. Large-scale direct SLAM for omnidirectional cameras[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 141-148.
[39] WEIKERSDORFER D, HOFFMANN R, CONRADT J. Simultaneous localization and mapping for event-based vision systems[C]//Proceedings of the 9th International Conference on Computer Vision Systems. Petersburg, Russia, 2013: 133-142.
[40] WEIKERSDORFER D, ADRIAN D B, CREMERS D, et al. Event-based 3D SLAM with a depth-augmented dynamic vision sensor[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014: 359-364.
[41] REBECQ H, HORSTSCHAEFER T, GALLEGO G, et al. EVO: a geometric approach to event-based 6-DOF parallel tracking and mapping in real time[J]. IEEE robotics and automation letters, 2017, 2(2): 593-600.
[42] ZHOU Yi, GALLEGO G, REBECQ H, et al. Semi-dense 3D reconstruction with a stereo event camera[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 242-258.
[43] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM: dense tracking and mapping in real-time[C]//Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain, 2011: 2320-2327.
[44] NEWCOMBE R A, IZADI S, HILLIGES O, et al. KinectFusion: real-time dense surface mapping and tracking[C]//Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality. Basel, Switzerland, 2011: 127-136.
[45] IZADI S, KIM D, HILLIGES O, et al. KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera[C]//Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology. Santa Barbara, USA, 2011: 559-568.
[46] WHELAN T, KAESS M, FALLON M, et al. Kintinuous: spatially extended kinectfusion[C]//Proceedings of RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras. Sydney, Australia, 2012.
[47] WHELAN T, JOHANNSSON H, KAESS M, et al. Robust real-time visual odometry for dense RGB-D mapping[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013: 5724-5731.
[48] WHELAN T, KAESS M, JOHANNSSON H, et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The international journal of robotics research, 2015, 34(4/5): 598-626.
[49] LABBé M, MICHAUD F. Memory management for real-time appearance-based loop closure detection[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA, 2011: 1271-1276.
[50] LABBé M M, MICHAUD F. Appearance-based loop closure detection for online large-scale and long-term operation[J]. IEEE transactions on robotics, 2013, 29(3): 734-745.
[51] LABBé M, MICHAUD F. Online global loop closure detection for large-scale multi-session graph-based slam[C]//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA, 2014: 2661-2666.
[52] LABBé M, MICHAUD F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation[J]. Journal of field robotics, 2019, 36(2): 416-446.
[53] KERL C, STURM J, CREMERS D. Dense visual SLAM for RGB-D cameras[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013: 2100-2106.
[54] KERL C, STURM J, CREMERS D. Robust odometry estimation for RGB-D cameras[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013: 3748-3754.
[55] NEWCOMBE R A, FOX D, SEITZ S M. Dynamicfusion: reconstruction and tracking of non-rigid scenes in real-time[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 343-352.
[56] INNMANN M, ZOLLH?FER M, NIE?NER M, et al. Volumedeform: real-time volumetric non-rigid reconstruction[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 362-379.
[57] DOU Mingsong, KHAMIS S, DEGTYAREV Y, et al. Fusion4D: real-time performance capture of challenging scenes[J]. ACM transactions on graphics, 2016, 35(4): 114.
[58] WHELAN T, LEUTENEGGER S, SALAS MORENO R, et al. Elasticfusion: dense SLAM without a pose graph[C]//Proceedings of Robotics: Science and Systems. Rome, Italy, 2015.
[59] WHELAN T, SALAS-MORENO R F, GLOCKER B, et al. ElasticFusion: real-time dense SLAM and light source estimation[J]. The international journal of robotics research, 2016, 35(14): 1697-1716.
[60] K?HLER O, PRISACARIU V A, MURRAY D W. Real-time large-scale dense 3D reconstruction with loop closure[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 500-516.
[61] PRISACARIU V A, K?HLER O, GOLODETZ S, et al. InfiniTAM v3: a framework for large-scale 3D reconstruction with loop closure[EB/OL]. (2017-08-02)[2020-02-25]. http://arxiv.org/abs/1708.00783.
[62] ENDRES F, HESS J, STURM J, et al. 3-D mapping with an RGB-D camera[J]. IEEE transactions on robotics, 2014, 30(1): 177-187.
[63] GREENE W N, OK K, LOMMEL P, et al. Multi-level mapping: real-time dense monocular SLAM[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden, 2016: 833-840.
[64] SMITH R C, CHEESEMAN P. On the representation and estimation of spatial uncertainty[J]. The international journal of robotics research, 1986, 5(4): 56-68.
[65] SUALEH M, KIM G W. Simultaneous localization and mapping in the epoch of semantics: a survey[J]. International journal of control, automation and systems, 2019, 17(3): 729-742.
[66] GOMEZ-OJEDA R, MORENO F A, ZU?IGA-NO?L D, et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments[J]. IEEE transactions on robotics, 2019, 35(3): 734-746.
[67] ZHOU Huizhong, ZOU Danping, PEI Ling, et al. StructSLAM: visual SLAM with building structure lines[J]. IEEE transactions on vehicular technology, 2015, 64(4): 1364-1375.
[68] ATANASOV N, BOWMAN S L, DANIILIDIS K, et al. A unifying view of geometry, semantics, and data association in SLAM[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 2018: 5204-5208.
相似文献/References:
[1]权美香,朴松昊,李国.视觉SLAM综述[J].智能系统学报,2016,11(6):768.[doi:10.11992/tis.201607026]
 QUAN Meixiang,PIAO Songhao,LI Guo.An overview of visual SLAM[J].CAAI Transactions on Intelligent Systems,2016,11():768.[doi:10.11992/tis.201607026]

备注/Memo

收稿日期:2020-04-23。
基金项目:装备预先研究项目(41417070401)
作者简介:王霞,副教授,博士生导师,光电成像与信息工程研究所副所长,主要研究方向为光电成像技术和光电检测技术。主持省部级以上项目和横向合作项目多项。获授权国家/国防发明专利10余项,研究成果获省级技术发明二等奖1项、科技进步三等奖3项、中国电子科技集团公司科技进步三等奖1项。编辑出版教材2部,发表学术论文70余篇;左一凡,博士研究生,主要研究方向为视觉SLAM、多传感器融合导航
通讯作者:左一凡.E-mail:zuoyifan_bit@outlook.com

更新日期/Last Update: 2021-01-15
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134