[1]毕晓君,潘梦迪.基于生成对抗网络的机载遥感图像超分辨率重建[J].智能系统学报,2020,15(1):74-83.[doi:10.11992/tis.202002002]
 BI Xiaojun,PAN Mengdi.Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15(1):74-83.[doi:10.11992/tis.202002002]
点击复制

基于生成对抗网络的机载遥感图像超分辨率重建

参考文献/References:
[1] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2013.
[2] 罗小波. 遥感图像智能分类及其应用[M]. 北京: 电子工业出版社, 2011.
[3] 石爱业, 徐枫, 徐梦溪. 图像超分辨率重建方法及应用[M]. 北京: 科学出版社, 2016.
[4] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[M]. FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision- ECCV 2014. Cham: Springer, 2014: 184-199.
[5] DONG Chao, LOY C C, TANG Xiaoou. Accelerating the super-resolution convolutional neural network[M]. LEIBE B, MATAS J, SEBE N, et al. Computer Vision- ECCV 2016. Cham: Springer, 2016: 391-407.
[6] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA, 2016: 1646-1654.
[7] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017: 105-114.
[8] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[J/OL]. (2017-01-26). https://arxiv.org/abs/1701.07875.
[9] 石爱业, 徐枫, 徐梦溪. 图像超分辨率重建方法及应用[M]. 北京: 科学出版社, 2016.
[10] TSAI R Y, HUANG T S. Multiframe image restoration and registration. Advances in Computer Vision and Image Pro-cessing: JAI Press Inc., 1984, 317-339.
[11] 高春波. 生成对抗网络的图像超分辨率重建[D]. 杭州: 浙江理工大学, 2019.
GAO Chunbo. Image super-resolution using a generative adversarial network[D]. Hangzhou: Zhejiang Sci-Tech University, 2019.
[12] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2672-2680.
[13] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015: 448-456.
[14] MASS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta, GA, USA, 2013.
[15] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA, 2017: 1132-1140.
[16] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883.
[17] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, USA, 2010: 270-279.
相似文献/References:
[1]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4():199.

备注/Memo

收稿日期:2020-02-04。
基金项目:国家自然科学基金项目(51779050)
作者简介:毕晓君,女,1964年生,教授,博士生导师,主要研究方向为智能信息处理、数字图像处理、智能优化算法及机器学习。主持国家自然科学基金面上项目2项,科技部国际合作项目面上项目1项,教育部博士点基金1项,工业与信息化部海洋工程装备科研项目子项目1项,民品横向课题1项,获国家专利8项。出版学术专著3部,发表学术论文160余篇;潘梦迪,女,1994年生,硕士研究生,主要研究方向为深度学习、图像处理
通讯作者:毕晓君.E-mail:bixiaojun@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134